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- Laboratory test results indicate that use of the warm-mix technologies assessed in this study did 
not significantly influence performance when compared to control specimens. However, the mixes 
produced with chemical surfactant technologies did appear to be influenced in part by the lower 
mix production and construction temperatures, which would have resulted in less oxidation of the 
binder and consequent lower stiffness of the mix. Rutting performance under accelerated load 
testing did not appear to be affected, however, nor did fatigue performance or moisture 
sensitivity. The warm mix produced using water injection technology appeared to have lower 
moisture resistance compared to the other three mixes in all the laboratory moisture sensitivity 
tests, but still met Caltrans-specified performance requirements in most instances. This mix was 
produced at a higher temperature than the other two warm mixes and contained no moisture. 
 

- Smoke and odors are significantly reduced on warm mixes compared to hot mixes, while 
workability is considerably better on warm mixes compared to hot mixes. The HVS and laboratory 
testing completed in this phase have provided no results to suggest that warm-mix technologies 
should not be used in rubberized asphalt in California. 
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PROJECT OBJECTIVES 
 

The objective of this warm-mix asphalt study is to determine whether the use of additives to reduce the 

production and construction temperatures of hot-mix asphalt will influence the performance of the mix. 

This will be achieved through the following tasks: 

1. Preparation of a workplan to guide the research; 

2. Monitoring the construction of Heavy Vehicle Simulator (HVS) and in-service test sections; 

3. Sampling of mix and mix components during asphalt concrete production and construction; 

4. Trafficking of demarcated sections with the HVS in a series of tests to assess performance; 

5. Conducting laboratory tests to identify comparable laboratory performance measures; 

6. Monitoring the performance of in-service pilot test sections; and 

7. Preparation of first- and second-level analysis reports and a summary report detailing the 

experiment and the findings. 

 

This report covers Tasks 2, 3, 4, 5, and 7. 
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EXECUTIVE SUMMARY 

The third phase of a comprehensive study into the use of warm-mix asphalt has been completed for the 

California Department of Transportation (Caltrans) by the University of California Pavement Research 

Center (UCPRC). This phase of the study, which investigated gap-graded rubberized asphalt concrete, 

was based on a workplan approved by Caltrans and included the design and construction of a test track, 

accelerated load testing using a Heavy Vehicle Simulator (HVS) to assess rutting behavior, and a series of 

laboratory tests on specimens sampled from the test track to assess rutting and fatigue cracking 

performance and moisture sensitivity. The objective of the study is to determine whether the use of 

technologies that reduce the production and construction temperatures of asphalt concrete influences 

performance of the mix. The study compared the performance of two rubberized asphalt control mixes, 

which were produced and constructed at conventional hot-mix asphalt temperatures (320°F [160°C]), 

with seven warm-mixes, produced and compacted at between 36°F (20°C) and 60°F (35°C) lower than 

the control. The mixes were produced at two different asphalt plants. The first part of the study, covered 

in this report, included mixes produced at Granite Construction’s Bradshaw Plant using Cecabase RT®, 

Evotherm DATTM, and Gencor Ultrafoam GXTM warm-mix technologies. The second part of the study, 

discussed in a separate report (UCPRC-RR-2011-03) included mixes produced at the George Reed 

Marysville Plant using Astec Double Barrel Green®, Advera WMA®, RedisetTM, and Sasobit® 

technologies. 

 

The test track is located at the University of California Pavement Research Center in Davis, California. 

The design and construction of the test track was a cooperative effort between Caltrans, the UCPRC, 

Granite Construction, George Reed Construction, Teichert Construction, and the seven warm-mix 

technology suppliers. The test track is 360 ft. by 50 ft. (110 m by 15 m) divided into nine test sections 

(two controls and seven warm-mixes). The pavement structure consists of the ripped and recompacted 

subgrade, 1.3 ft. (400 mm) of imported aggregate base, one 0.2 ft. (60 mm) lift of dense-graded hot-mix 

asphalt, and one 0.2 ft. (60 mm) lift of gap-graded rubberized hot-mix (RHMA-G) or warm-mix 

(RWMA-G) asphalt concrete. Each asphalt plant prepared a mix design. No adjustments were made to 

these mix designs to accommodate the warm-mix technologies. Target production temperatures were not 

set; instead the warm-mix technology suppliers set their own temperatures based on experience, ambient 

temperatures, and haul distance. 

 

The production temperature for the Granite Bradshaw RHMA-G control mix was 320°F (160°C) and 

266°F (130°C), 248°F (125°C), and 284°F (140°C) for the Cecabase, Evotherm, and Gencor warm-mixes, 

respectively. 
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The rubberized asphalt sections were placed in April 2010. Specimens were removed from the test track 

for laboratory testing approximately six weeks after construction. 

 

Heavy Vehicle Simulator (HVS) testing commenced in June 2010 after a six-week curing period and was 

completed in December 2010. This testing compared early rutting performance at elevated temperatures 

(pavement temperature of 122°F at 2.0 in. [50°C at 50 mm]), starting with a 9,000 lb (40 kN) load on a 

standard dual-wheel configuration and a unidirectional trafficking mode. Laboratory testing also 

commenced in June 2010 and was completed in July 2011. The test program included shear testing, wet 

and dry fatigue testing, Hamburg Wheel-Track testing, and determination of the wet-to-dry tensile 

strength ratio. 

 

Key findings from the study include: 

 A consistent subgrade was prepared and consistent base-course and underlying dense-graded hot-
mix asphalt concrete layers were constructed on the test track using materials sourced from a 
nearby quarry and asphalt plant. Thickness and compaction of the base and bottom layer of asphalt 
were consistent across the test track. 

 Minimal asphalt plant modifications were required to accommodate the warm-mix technologies 
and the delivery systems were approved under the Caltrans Material Plant Quality Program. 

 No problems were noted with producing the asphalt mixes at the lower temperatures. Target mix 
production temperatures (320°F, 284°F, 248°F, and 266°F [160°C, 125°C, 140°C, and 130°C] for 
the Control, Gencor, Evotherm, and Cecabase mixes, respectively), set by the warm-mix 
technology providers, were all achieved. There was very little variation in mix properties between 
the four mixes. Hveem stabilities, determined at three different curing regimes, exceeded the 
minimum requirement by a considerable margin. Curing did not appear to influence the stability. 
No moisture was measured in the mixes after production. 

 Compaction temperatures differed considerably between the mixes and were consistent with 
production temperatures. The Evotherm and Cecabase mixes, produced at 248°F and 266°F (140°C 
and 130°C), respectively, lost heat during transport and placement at a slower rate that the Control 
and Gencor mixes, which were produced at higher temperatures. The lower temperatures in the 
three warm-mixes did not appear to influence the paving or compaction operations and interviews 
with the paving crew after construction revealed that no problems were experienced at the lower 
temperatures. Improved working conditions were identified as an advantage. 

 Smoke and odors were significantly more severe on the Control section compared to the Gencor 
section. No smoke or odors were noted on the Evotherm and Cecabase sections. 

 Mix workability, determined through observation of and interviews with the paving crew, was 
considerably better on the warm-mix sections compared to the Control. 

 Average thicknesses of the top (rubberized) and bottom asphalt layers across the four sections were 
0.22 ft. (66 mm) and 0.23 ft. (74 mm), respectively. The average thickness of the combined two 
layers was 0.45 ft. (137 mm), 0.05 ft. (17 mm) thicker than the design thickness of 0.4 ft. 
(120 mm). General consistency of thickness across the track was considered satisfactory and 
representative of typical construction projects. 
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 Nuclear gauge–determined density measurements were inconsistent with core determined air-void 
contents. The core determined air-void contents indicated that slightly higher density was achieved 
on the Control section (95 percent of the RICE specific gravity) compared to the warm-mix 
sections (94 percent). Compaction across the test track appeared to be consistent, confirming that 
adequate compaction can be achieved on rubberized warm-mixes at lower temperatures. Based on 
observations from the test track construction and interviews with roller operators, optimal 
compaction temperatures and rolling patterns will differ between the different warm-mix 
technologies, but it was shown that adequate compaction can be achieved on warm-mixes at the 
lower temperatures. Roller operators will, however, need to consider that there might be differences 
in roller response between warm-mix and conventional hot mixes, and that rolling operations and 
patterns may need to be adjusted to ensure that optimal compaction is always achieved. 

 HVS trafficking on each of the four sections revealed that the duration of the embedment phases on 
all sections were similar; however, the depth of the ruts at the end of the embedment phases 
differed slightly between sections, with the Gencor (0.26 in. [6.5 mm]) and Cecabase (0.22 in. 
[5.5 mm]) having less embedment than the Control and Evotherm sections, which had similar 
embedment (0.31 in. [7.9 mm]). This is opposite to the early rutting performance in the Phase 1 
study. 

 Rut rate (rutting per load repetition) after the embedment phase on the Control and Evotherm 
sections was almost identical. On the Gencor and Cecabase sections, rut rate was considerably 
slower than the Control after the embedment phase. The difference in performance between the 
three warm-mix sections is attributed in part to the lower production and paving temperatures of the 
Evotherm mix compared to the other warm mixes, as well as to the thickness of the asphalt layers 
(the Evotherm section had thinner asphalt layers than the Control and Cecabase sections). 

 The laboratory test results indicate that use of the warm-mix technologies assessed in this study, 
which were produced and compacted at lower temperatures, did not significantly influence the 
performance of the asphalt concrete when compared to control specimens produced and compacted 
at conventional hot-mix asphalt temperatures. Specific observations include: 
+ Shear performance of the Evotherm and Cecabase mixes did appear to be influenced in part by 

the lower mix production and construction temperatures, which would have resulted in less 
oxidation of the binder and consequent lower stiffness of the mix. Rutting performance under 
accelerated load testing did not appear to be affected, however. Fatigue performance and 
moisture sensitivity also did not appear to be affected. 

+ The Gencor (water injection technology) mix appeared to have lower moisture resistance 
compared to the other three mixes in all the moisture sensitivity tests, but still met Caltrans-
specified performance requirements in most instances. This mix was produced at a higher 
temperature than the other two warm-mixes and contained no moisture. 

+ Laboratory test results were influenced by mix production temperatures, actual binder content, 
specimen air-void content, actual stress and strain levels, and actual test temperature. These 
parameters need to be taken into consideration when comparing performance between the 
different mixes. 

 

The HVS and laboratory testing completed in this phase have provided no results to suggest that warm-

mix technologies should not be used in gap-graded rubberized mixes in California, provided that standard 

specified construction and performance limits for hot-mix asphalt are met. Significant reductions in 

smoke and odors and improved workability of the warm mixes also support wider use of these 
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technologies. Consideration should be given to further study into the effects of warm-mix asphalt 

technologies and production and placement of warm-mixes at lower temperatures on binder 

oxidation/aging rates.  The effects that these may have on performance over the life of the asphalt 

surfacing should also be investigated. Research in this study has shown differences in early rutting 

performance between conventional and rubber mixes, between mixes tested after different curing periods, 

and between pavements subjected to mostly shade and mostly sun, respectively. 
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1. INTRODUCTION 

1.1 Background 

Warm-mix asphalt is a relatively new technology. It has been developed in response to needs for reduced 

energy consumption and stack emissions during the production of asphalt concrete, long hauls, lower 

placement temperatures, improved workability, and better working conditions for plant and paving crews. 

Studies in the United States and Europe indicate that significant reductions in production and placement 

temperatures are possible. 

 

Research initiatives on warm-mix asphalt are currently being conducted in a number of states, as well as 

by the Federal Highway Administration and the National Center for Asphalt Technology (NCAT). 

Accelerated pavement testing experiments are being carried out at NCAT. 

 

The California Department of Transportation (Caltrans) has expressed interest in warm-mix asphalt with a 

view to reducing stack emissions at plants, to allow longer haul distances between asphalt plants and 

construction projects, to improve construction quality (especially during nighttime closures), and to extend 

the annual period for paving. However, the use of warm-mix asphalt technologies requires incorporating 

an additive into the mix, and/or changes in production and construction procedures, specifically related to 

temperature, which could influence the short- and long-term performance of the pavement. Consequently, 

the need for research was identified by Caltrans to address a range of concerns related to these changes 

before statewide implementation of the technology is approved. 

 

1.2 Project Objectives 

The research presented in this report is part of Partnered Pavement Research Center Strategic Plan 

Element 4.18 (PPRC SPE 4.18), titled “Warm-Mix Asphalt Study,” undertaken for Caltrans by the 

University of California Pavement Research Center (UCPRC). The objective of this multi-phase project is 

to determine whether the use of additives intended to reduce the production and construction temperatures 

of asphalt concrete influence mix production processes, construction procedures, and the short-, medium-, 

and/or long-term performance of hot-mix asphalt. The potential benefits of using the additives will also be 

quantified. This is to be achieved through the following tasks: 

 Develop a detailed workplan (1) for Heavy Vehicle Simulator (HVS) and laboratory testing 
(Completed in September 2007). 

 Construct test tracks (subgrade preparation, aggregate base-course, tack coat, and asphalt wearing 
course) at the Graniterock A.R. Wilson quarry near Aromas, California (completed in September 
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2007 for the Phase 1 and Phase 2 studies), and at the UCPRC facility in Davis, California 
(completed in April 2010 for the Phase 3 study). 

 Undertake HVS testing in separate phases, with later phases dependent on the outcome of earlier 
phases and laboratory tests (Phase 1 [rutting on HMA/WMA] was completed in April 2008, Phase 2 

[moisture sensitivity on HMA/WMA] was completed in July 2009, and Phase 3 [rutting on 
RHMA-G/RWMA-G] was completed in July 2011). 

 Carry out a series of laboratory tests to assess rutting and fatigue behavior (Phase 1 [plant-mixed, 
field-compacted] completed in August 2008, Phase 2a [plant-mixed, laboratory-compacted] 
completed in August 2009, Phase 2b [laboratory-mixed, laboratory-compacted] was completed in 
June 2010, and Phase 3 [plant-mixed, field-compacted] was completed in June 2011). 

 Prepare a series of reports describing the research. 
 Prepare recommendations for implementation. 

 

Selected pilot studies with warm-mix technologies on in-service pavements will also be monitored as part 

of the study. 

 

1.3 Overall Project Organization 

This UCPRC project has been planned as a comprehensive study to be carried out in a series of phases, 

with later phases dependent on the results of the initial phase. The planned testing phases include (1): 

 Phase 1 compared early rutting potential at elevated temperatures (pavement temperature of 122°F 
at 2.0 in. [50°C at 50 mm]). HVS trafficking began approximately 45 days after construction. Cores 
and beams sawn from the sections immediately after construction were subjected to rutting, fatigue, 
cracking, and moisture sensitivity testing in the laboratory. The workplan dictated that moisture 
sensitivity, additional rutting, and fatigue testing with the HVS would be considered if the warm-
mix asphalt concrete mixes performed differently than the conventional mixes. The results from this 
phase are discussed in a report entitled Warm-Mix Asphalt Study: Test Track Construction and 

First-Level Analysis of Phase 1 HVS and Laboratory Testing (2). 
 Depending on the outcome of laboratory testing for moisture sensitivity, a testing phase, if deemed 

necessary, would assess general performance under dry and wet conditions with special emphasis 
on moisture sensitivity. Phase 1 laboratory testing indicated a potential for moisture damage, 
prompting initiation of a second phase. Phase 2 compared rutting potential at elevated temperatures 
(pavement temperature of 122°F at 2.0 in. [50°C at 50 mm] pavement depth) and under wet 
conditions. HVS trafficking started approximately 90 days after completion of the Phase 1 HVS 
testing (12 months after construction). The results from Phase 2 are discussed in two reports entitled 

Warm-Mix Asphalt Study:  First-Level Analysis of Phase 2 HVS and Laboratory Testing, and 
Phase 1 and Phase 2 Forensic Assessments (3) and Warm-Mix Asphalt Study:  First-Level Analysis 

of Phase 2b Laboratory Testing on Laboratory Prepared Specimens (4). 
 Depending on the outcome of laboratory testing for rutting, a testing phase, if deemed necessary, 

would assess rutting performance on artificially aged test sections at elevated temperatures (122°F 
at 2.0 in. [50°C at 50 mm]). The actual process used to artificially age the sections was not 
finalized, but it would probably follow a protocol developed by the Florida Department of 
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Transport Accelerated Pavement Testing program, which uses a combination of infrared and 
ultraviolet radiation. Phase 1 laboratory testing results and Phase 2 HVS testing results provided no 
indication of increased rutting on aged sections and consequently this phase was not undertaken. 

 Depending on the outcome of the laboratory study for fatigue, a testing phase, if deemed necessary, 
would assess fatigue performance at low temperatures (59°F at 2.0 in. [15°C at 50 mm]). Phase 1 
laboratory testing did not indicate that the warm-mix asphalt technologies tested would influence 
fatigue performance and consequently this phase was not undertaken. 

 Depending on the outcome of the above testing phases and if agreed upon by the stakeholders 
(Caltrans, warm-mix technology suppliers), the sequence listed above or a subset of the sequence 
would be repeated for gap-graded rubberized asphalt concrete (RHMA-G), and again for open-
graded mixes. The testing of gap-graded rubberized mixes was undertaken in two subphases and is 
discussed in this report and in a companion report entitled Warm-Mix Asphalt Study: Test Track 

Construction and First-Level Analysis of Phase 3b HVS and Laboratory Testing (Rubberized 
Asphalt, Mix Design #2) (5). 

 Periodic assessment of the performance of gap-graded mixes in full-scale field experiments. This 
work is discussed in a separate report on that study entitled Warm-Mix Asphalt Study: Field Test 
Performance Evaluation (6). 

 

This test plan is designed to evaluate short-, medium-, and long-term performance of the mixes. 

 Short-term performance is defined as failure by rutting of the asphalt-bound materials. 
 Medium-term performance is defined as failure caused by moisture and/or construction-related 

issues. 
 Long-term performance is defined as failure from fatigue cracking, reflective cracking, and/or 

rutting of the asphalt-bound and/or unbound pavement layers. 
 

The following questions, raised by Caltrans staff in a pre-study meeting, will be answered during the 

various phases of the study (1): 

 What is the approximate comparative energy usage between HMA and WMA during mix 
preparation? This will be determined from asphalt plant records/observations in pilot studies where 
sufficient tonnages of HMA and WMA are produced to undertake an assessment. 

 Can satisfactory compaction be achieved at lower temperatures? This will be established from 
construction monitoring and subsequent laboratory tests. 

 What is the optimal temperature range for achieving compaction requirements? This will be 
established from construction monitoring and subsequent laboratory tests. 

 What are the cost implications? These will be determined with basic cost analyses from pilot studies 
where sufficient tonnages of HMA and WMA are produced to undertake an assessment.  

 Does the use of warm-mix asphalt technologies influence the rutting performance of the mix? This 
will be determined from all HVS and laboratory tests. 

 Is the treated mix more susceptible to moisture sensitivity given that the aggregate is heated to 
lower temperatures? This will be determined from Phase 1 laboratory tests and Phase 2 HVS 
testing. 
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 Does the use of warm-mix asphalt technologies influence fatigue performance? This will be 
determined from Phase 1 and Phase 2 laboratory tests and potential additional laboratory and HVS 
testing. 

 Does the use of warm-mix asphalt technologies influence the performance of the mix in any other 
way? This will be determined from HVS and laboratory tests, and from field observations (all 
phases). 

 If the experiment is extended to rubberized gap-graded and standard, rubberized, and polymer-
modified open-graded mixes, are the impacts of using the warm-mix technologies in these mixes 
the same as for conventional dense-graded mixes? 

 

1.3.1 Project Deliverables 

Deliverables from the study will include: 

 A detailed workplan for the entire study (1); 
 A report detailing construction, first-level data analysis of the Phase 1 HVS testing, first-level data 

analysis of the Phase 1 laboratory testing, and preliminary recommendations (2); 
 A report detailing first-level data analysis of the Phase 2 HVS testing, first-level data analysis of the 

Phase 2a laboratory testing, Phase 1 and Phase 2 forensic investigations, and preliminary 
recommendations (3);  

 A report detailing first-level analysis of the Phase 2b laboratory testing on laboratory-mixed, 
laboratory-compacted specimens (4); 

 A report detailing first-level data analysis of the Phase 3a (mixes produced at Granite 
Construction’s Bradshaw plant) HVS testing, first-level data analysis of the Phase 3a laboratory 
testing, Phase 3a forensic investigation, and preliminary recommendations (this report); 

 A report detailing first-level data analysis of the Phase 3b (mixes produced at George Reed’s 
Marysville plant) HVS testing, first-level data analysis of the Phase 3b laboratory testing, Phase 3b 
forensic investigation, and preliminary recommendations (5); 

 A report summarizing periodic observations from test sections on in-service pavements (6); and 
 A summary report for the entire study. 

 

A series of conference and journal papers documenting various components of the study will also be 

prepared. 

 

1.4 Structure and Content of this Report 

1.4.1 Warm-Mix Technologies Tested 

In the Phase 1 and Phase 2 studies, the three most prominent warm mix technologies (Advera WMA®, 

Evotherm DATTM, and Sasobit®) were assessed. During that testing phase numerous other technologies 

were developed and consequently additional technologies, specifically those based on water injection (or 

mechanical foam), were considered for the Phase 3 study. The technologies assessed were selected based 

on participation of warm-mix technology providers in the Caltrans Warm-mix Asphalt Technical Working 

Group. Given that two different water injection technologies would be tested and that these technologies 

are asphalt plant-specific (i.e., they are integral components of the asphalt plant), the Phase 3 study tested 
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mixes from two different asphalt plants. Since two different aggregate sources and consequently two 

different mix designs were used, testing and reporting has been undertaken in two subphases to limit 

inappropriate performance comparisons, as follows: 

 Phase 3a:  Mix Design #1 using mixes produced at the Granite Construction Bradshaw Plant (this 
report) 
+ Hot-mix control 
+ Gencor Ultrafoam GXTM, water injection technology, referred to as Gencor in this report 
+ Evotherm DATTM, chemical surfactant technology, referred to as Evotherm in this report 
+ Cecabase RT®, chemical surfactant technology, referred to as Cecabase in this report 

 Phase 3b:  Mix Design #2 using mixes produced at the George Reed Construction Marysville Plant 
(companion report [5]) 
+ Hot-mix control 
+ Astec Double Barrel Green®, water injection technology, referred to as Astec in this report 
+ Sasobit®, organic wax technology, referred to as Sasobit in this report 
+ Advera WMA®, chemical water foaming technology, referred to as Advera in this report 
+ RedisetTM, chemical surfactant technology, referred to as Rediset in this report. 

 

1.4.2 Report Layout 

This report presents an overview of the work carried out in Phase 3a to continue meeting the objectives of 

the study, and is organized as follows: 

 Chapter 2 summarizes the HVS test track location, design, and construction. 
 Chapter 3 details the HVS test section layout and HVS test criteria. 
 Chapter 4 provides a summary of the Phase 3a HVS test data collected from each test. 
 Chapter 5 details the forensic investigations undertaken on each HVS test section after testing. 
 Chapter 6 discusses the Phase 3a laboratory testing on specimens sampled from the test track. 
 Chapter 7 provides conclusions and preliminary recommendations. 

 

1.5 Measurement Units 

Although Caltrans has recently returned to the use of U.S. standard measurement units, metric units have 

always been used by the UCPRC in the design and layout of HVS test tracks, and for laboratory and field 

measurements and data storage. In this report, both English and metric units (provided in parentheses after 

the English units) are provided in general discussion. In keeping with convention, only metric units are 

used in HVS and laboratory data analyses and reporting. A conversion table is provided on page xix of 

this report. 

 

1.6 Terminology 

The term “asphalt concrete” is used in this report as a general descriptor for the surfacing on the test track. 

The terms “hot-mix asphalt (HMA)” and “warm-mix asphalt (WMA)” are used as descriptors to 

differentiate between the control and warm-mixes discussed in this study. 
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2. TEST TRACK LOCATION, DESIGN, AND CONSTRUCTION 

2.1 Experiment Location 

The Phase 3 warm-mix asphalt experiment is located on the North Test Track at the University of 

California Pavement Research Center facility in Davis, California. An aerial view of the site is shown in 

Figure 2.1. This was the first test undertaken on this test track. 

 

 

Figure 2.1:  Aerial view of the UCPRC research facility. 
 

2.2 Test Track Layout 

The North Test Track is 361 ft. (110 m) long and 49.2 ft (15 m) wide. It has a two percent crossfall in a 

north-south direction. For the study, the track was divided into nine equal cells, 120.4 ft. (36.7 m) long 

and 16.4 ft. (5.0 m) wide. Its lay out is shown in Figure 2.2, with Cells 1 through 4 used in the Phase 3a 

study (Control, Gencor, Evotherm, and Cecabase, respectively) and Cells 5 through 9 (Sasobit, Advera, 

Control, Astec, and Rediset, respectively) used in the Phase 3b study (5). All test track measurements and 

locations discussed in this report are based on this layout. 

 

 

North Test Track 

N



 

 
8 UCPRC-RR-2011-02 

0 
   

   
   

   
  1

0 
   

   
   

   
  2

0 
   

   
   

   
  3

0 
   

   
   

  
40

   
   

   
   

   
 5

0 
   

   
   

   
  6

0 
   

   
   

   
  7

0 
   

   
 

80
   

   
   

   
  9

0 
   

   
   

   
10

0 
   

   
   

  1
10

N

Not to scale.
Distances in meters.

36.6

72.4

0.0           2.5 7.5 12.5         15.0

10.05.0

Cell #1
(Control)

Cell #4
(Cecabase)Cell #7

Cell #2
(Gencor)Cell #5Cell #8

Cell #3
(Evotherm)Cell #6Cell #9

Lane 1 Lane 2 Lane 3

 

Figure 2.2:  Test track layout. 
 

2.3 Pavement Design 

Dynamic cone penetrometer (DCP) tests were performed along the center lines of each lane over the 

length and width of the test track (Figure 2.3) prior to any construction to obtain an indication of the in 

situ subgrade strength. Results are summarized in Table 2.1. Penetration rates varied between 11 mm per 

blow and 30 mm per blow, with the weakest areas in the middle of the track spanning Cells 5 and 6. 

Variation was attributed to the degree of soil mixing, temporary stockpiling of lime-treated soils (lime 

treatment was used to dry the soil in some areas of the site), to compaction from equipment during 

construction of the facility, and to varying subgrade moisture contents. 
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Figure 2.3:  DCP test locations. 
 

Table 2.1:  Summary of DCP Survey on Subgrade Material 
Penetration Rate 

(mm/blow) 
Estimated California Bearing 

Ratio2 
Estimated Stiffness 

(MPa)2 
Test 

Location1 
(m) Lane #1 Lane #2 Lane #3 Lane #1 Lane #2 Lane #3 Lane #1 Lane #2 Lane #3 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

17 
16 
14 
13 
13 
12 
15 
14 
12 
11 

21 
18 
16 
22 
26 
25 
30 
28 
26 
20 

19 
15 
13 
16 
15 
16 
15 
15 
14 
15 

11 
12 
14 
15 
15 
17 
13 
14 
17 
19 

  9 
10 
12 
  8 
  6 
  6 
  5 
  5 
  6 
  9 

  9 
13 
15 
12 
13 
12 
13 
13 
14 
13 

56 
60 
66 
71 
71 
77 
63 
66 
77 
85 

41 
46 
60 
40 
36 
37 
30 
34 
36 
42 

44 
63 
71 
60 
63 
60 
63 
63 
66 
63 

1 Measured from southwest corner of the track.  2 Estimated from DCP software tool. 
 

A sensitivity analysis of potential pavement designs using layer elastic theory models was carried out 

using the DCP results obtained during the site investigation and estimates, based on previous experience, 

of the moduli of a representative aggregate base-course and asphalt concrete surfacing. Components of the 

sensitivity analysis included the following 24 cells: 
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 Three asphalt concrete thicknesses (100 mm, 125 mm, and 150 mm) 
 Three asphalt concrete moduli (600 MPa, 1,000 MPa, and 3,000 MPa) 
 Two base-course thicknesses (300 mm and 400 mm) 
 Two base-course moduli (150 MPa and 300 MPa) 
 One subgrade (existing soil with modulus of 60 MPa). 

 

A test pavement design was selected to maximize the information that would be collected about the 

performance of warm-mix asphalt, taking into consideration that a very strong pavement would lengthen 

the testing time before results (and an understanding of the behavior) could be obtained, while a very 

weak pavement could fail before any useful data was collected. The pavement design shown in Error! 

Reference source not found. was considered appropriate for the study. 

 

Layer: RHMA-G/RWMA-G 
 Thickness: 60 mm (0.2 ft.),   Modulus: 460 MPa @ 50°C (66.7 ksi @ 122°F) 
Layer: HMA 
 Thickness: 60 mm (0.2 ft.),   Modulus: 615 MPa @ 50°C (89.2 ksi @ 122°F) 

Layer: Imported Class 2 Aggregate Base-Course 
 Thickness: 400 mm (1.3 ft.),  Modulus: 300 MPa (43.5 ksi) 

Layer: Prepared Subgrade 
 Thickness: Semi-infinite,   Modulus: 60 MPa (8.7 ksi) 

Figure 2.4:  Pavement structure for rubberized warm-mix asphalt test sections. 
 

2.4 Subgrade Preparation 

2.4.1 Equipment 

The following equipment was used for preparation of the subgrade: 

 Water tanker (4,000 gal. [15,000 L]) 
 Caterpillar 163H grader 
 Caterpillar 623F scraper 
 Caterpillar 815F padfoot roller 
 Ingersoll Rand SD-115-D vibrating steel drum roller 

 

2.4.2 Preparation 

The subgrade was prepared on September 22, 2009. Preparation included vegetation removal, preliminary 

leveling, ripping, watering and mixing, compaction, and final leveling to include a two percent north–

south crossfall as follows: 



 

 
UCPRC-RR-2011-02 11 

 Removing vegetation with a grader, windrowing of the deleterious material toward the center of the 
track, collecting this material with a scraper and dumping it in a temporary stockpile for removal 
(Figure 2.5). 

 Preliminary leveling with a grader followed by watering (Figure 2.6). 
 Ripping to a depth of 12 in. (300 mm) (Figure 2.7). 
 Watering and mixing using both the scraper and grader (Figure 2.8). Pockets of high clay content 

soils were observed during this process, which required additional working with the grader and 
scraper to break up the clods (Figure 2.9). 

 Initial compaction with a padfoot roller (Figure 2.10). Despite extensive mixing, some clay pockets 
were still observed after completion of the initial compaction, with padfoot impressions clearly 
visible (Figure 2.11). Clay pockets appeared to predominate on the eastern half of the track. 

 Final compaction with a vibrating smooth drum roller (Figure 2.12). 
 Final leveling with a grader. 
 Density checks on the finished surface (Figure 2.13) with a nuclear density gauge. 

 

Figure 2.5:  Vegetation removal. 

Figure 2.6:  Preliminary leveling. Figure 2.7:  Ripping. 
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Figure 2.8:  Watering and mixing. Figure 2.9:  Breaking up of clay clods. 

Figure 2.10:  Initial compaction. Figure 2.11:  Padfoot impressions in clay 
pockets. 

Figure 2.12:  Final compaction. Figure 2.13:  Final subgrade surface. 
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2.4.3 Quality Control 

Quality control of the subgrade preparation was limited to density checks with a nuclear gauge following 

Caltrans Test Method CT 231 and comparison of the results against a laboratory maximum density of 

134.2 lb/ft3 (2,150 kg/m3) determined according to Caltrans Test Method CT 216. Nuclear gauge 

measurements were taken at 10 different locations selected according to a nonbiased plan shown in 

Figure 2.14. Samples for laboratory density determination were taken at locations 1, 2 and 3. Results are 

summarized in Table 2.2 and indicate that the subgrade density was generally consistent across the test 

track. Relative compaction varied between 95.4 percent and 99.2 percent with an average of 97.0 percent, 

two percent above the Caltrans-specified minimum density of 95 percent for subgrade compaction (7). No 

location had a relative compaction lower than this minimum. 
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Figure 2.14:  Location of subgrade density measurements. 
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Table 2.2:  Summary of Subgrade Density Measurements 
Wet Density Moisture 

Content 
Dry Density Relative 

Compaction 
Location 

(lb/ft3) (kg/m3) (%) (lb/ft3) (kg/m3) (%) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

130.5 
132.6 
131.3 
130.2 
133.2 
128.9 
132.2 
128.1 
132.3 
128.7 

2,091 
2,124 
2,103 
2,086 
2,133 
2,065 
2,117 
2,052 
2,120 
2,062 

15.6 
17.3 
16.8 
16.2 
15.2 
17.8 
17.9 
18.7 
16.5 
15.0 

112.6 
113.1 
112.4 
112.1 
115.6 
109.5 
112.1 
107.9 
113.6 
111.9 

1,804 
1,811 
1,801 
1,796 
1,852 
1,754 
1,795 
1,728 
1,820 
1,793 

97.3 
98.8 
97.8 
97.0 
99.2 
96.0 
98.5 
95.4 
98.6 
95.9 

Average 
Std. Dev. 

130.8 
1.8 

2,095 
29 

17.0 
1.2 

112.1 
2.1 

1,795 
34 

97.0 
1.3 

 

2.5 Base-Course Construction 

2.5.1 Material Properties 

Base-course aggregates were sourced from Teichert’s Cache Creek quarry. Key material properties are 

summarized in Table 2.3. The material met Caltrans specifications, except for the percent passing the 

#200 sieve, which exceeded the specification operating range by 3.0 percent, and just met the contract 

compliance limits. 

Table 2.3:  Base-Course Material Properties 
Property Result Operating Range Contract Compliance 

Grading: 1" (25 mm) 
 3/4" (19 mm) 
 1/2" (12.5 mm) 
 3/8" (9.5 mm) 
 #4 (4.75 mm) 
 #8 (2.36 mm) 
 #16 (1.18 mm) 
 #30 (600 μm) 
 #50 (300 μm) 
 #100 (150 μm) 
 #200 (75 μm) 

100 
99.1 
90.1 
83.5 
63.3 
48.8 
39.2 
30.8 
21.6 
15.6 
12.3 

100 
90 – 100 

– 
– 

35 – 60 
– 
– 

10 – 30 
– 
– 

2 – 9 

100 
87 – 100 

– 
– 

30 – 65 
– 
– 

5 – 35 
– 
– 

0 – 12 
Liquid Limit 
Plastic Limit 
Plasticity Index 

Non-plastic 
– 
– 
– 

– 
– 
– 

Maximum Dry Density (lbs/ft3/kg/m3) 
Optimum Moisture Content 

140.6 (2,252) 
6.0 

– 
– 

– 
– 

R-Value 
Sand equivalent 
Durability index – course 
Durability index – fine 

79 
30 
78 
52 

– 
25 
– 
– 

>78 
>22 
>35 
>35 

 

2.5.2 Equipment 

The following equipment was used during the construction of the base-course: 

 Water tanker (4,000 gal. [15,000 L]) 
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 Caterpillar 163H grader 
 Caterpillar 623F scraper 
 Ingersoll Rand SD-115-D vibrating steel drum roller 

 

2.5.3 Construction 

The test track base-course was constructed on September 24, 2009, two days after the subgrade 

preparation. The construction process included aggregate spreading, watering, compaction, and final 

leveling to include a two percent north-south crossfall as follows: 

 Transporting crushed base-course material (alluvial) that complied with Caltrans Class 2 aggregate 
base-course specifications from Teichert’s Cache Creek aggregate source to the test track with a 
fleet of bottom-dump trucks and trailers. 

 Dumping the aggregate in windrows (Figure 2.15). 
 Spreading the aggregate with a grader (Figure 2.16) to a thickness of approximately 4.0 in. 

(100 mm). 
 Adding water to bring the aggregate to the optimum moisture content and re-mixing with the grader 

to ensure even distribution of the moisture throughout the material (Figure 2.17). 
 Initial compaction of the spread material with a vibrating steel wheel roller (Figure 2.18). 
 Repeating the process until the design thickness of 1.3 ft. (400 mm) was achieved. 
 Applying a generous application of water (Figure 2.19) followed by compaction to pump fines to 

the surface to provide good aggregate interlock (slushing). 
 Final leveling with a grader (Figure 2.20). Final levels were checked with a total station to ensure 

that a consistent base-course thickness had been achieved. 
 Removal of excess material with a scraper followed by final compaction (Figure 2.21). 
 Density checks on the finished surface with a nuclear density gauge. 

 

  

Figure 2.15:  Dumping material in windrows. Figure 2.16:  Material spreading. 
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Figure 2.17:  Watering. Figure 2.18:  Initial compaction. 

  

Figure 2.19:  Heavy watering prior to pre-final 
compaction. 

Figure 2.20:  Final leveling with a grader. 

 

Figure 2.21:  Removing excess material and final compaction. 
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2.5.4 Quality Control 

Quality control of the base-course construction was limited to density checks with a nuclear gauge 

following Caltrans Test Method CT 231 and comparison of the results against a laboratory maximum wet 

density of 150.5 lb/ft3 (2,410 kg/m3) determined according to Caltrans Test Method CT 216. Nuclear 

gauge measurements were taken at 10 different locations selected according to a nonbiased plan shown in 

Figure 2.22. A sample for laboratory density determination was taken at Location #1. Results are 

summarized in Table 2.4 and indicate that the base-course density properties were generally consistent 

across the test track, but that the material was relatively wet compared to the laboratory-determined 

optimum moisture content. Relative compaction varied between 96.7 percent and 99.4 percent with an 

average of 98.0 percent, three percent above the Caltrans specified minimum density of 95 percent for 

base compaction (7). No location had a relative compaction lower than this minimum. 
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Figure 2.22:  Location of base density measurements. 
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Table 2.4:  Summary of Nuclear Gauge Base-Course Density Measurements 
Wet Density Moisture 

Content 
Dry Density Relative 

Compaction 
Location 

(lb/ft3) (kg/m3) (%) (lb/ft3) (kg/m3) (%) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

146.5 
148.5 
148.0 
147.1 
148.7 
145.5 
149.0 
145.6 
149.5 
145.7 

2,346 
2,379 
2,371 
2,356 
2,382 
2,330 
2,387 
2,332 
2,395 
2,334 

6.6 
7.0 
8.0 
7.8 
6.3 
6.8 
8.2 
7.7 
6.9 
7.8 

137.4 
138.8 
137.0 
136.5 
139.9 
136.2 
137.7 
135.2 
139.8 
135.2 

2,201 
2,223 
2,195 
2,186 
2,241 
2,182 
2,206 
2,165 
2,240 
2,165 

97.3 
98.7 
98.4 
97.8 
98.8 
96.7 
99.0 
96.8 
99.4 
96.8 

Average 
Std. Dev. 

147.4 
1.5 

2,361 
25 

7.3 
0.7 

137.3 
1.7 

2,200 
27.6 

98.0 
1.0 

 

2.5.5 Follow-Up Testing Prior to Paving 

Paving of the first lift of asphalt concrete was scheduled for October 7, 2009. However, contractor 

scheduling and then rainfall on four days (October 13, 14, 15, and 19) delayed priming of the surface until 

October 23, 2009, and paving until October 30, 2009. Rainfall measured over the four days totaled 3.1 in. 

(78 mm). Some ponding of water in Cells #1 and #2 on the western end of the test track was observed 

during these rainfall events (Figure 2.23). 

 

  

Figure 2.23:  Ponding of water on base. 
 

Dynamic cone penetrometer (DCP) measurements were undertaken on the base at the same locations as 

the original subgrade DCP survey (Figure 2.3) to assess whether the rainfall had weakened the base on 

any parts of the track. The results are summarized in Table 2.5 and indicate that although average 

penetration rates (mm/blow) were consistent across the track, there was considerable difference in the 

average calculated stiffness of the base from the redefined layers based on actual penetration. 

Consequently, the contractor was requested to recompact the track with a static steel drum roller prior to 

priming to consolidate the base layer and accelerate movement of infiltrated water to the surface. 
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A significant improvement in subgrade stiffness attributed to the subgrade preparation and confinement by 

the base was also noted. 

Table 2.5:  Summary of DCP Survey on Base and Subgrade Material 
Penetration Rate 

(mm/blow) 
Estimated Stiffness 

(MPa [ksi])2 

Base Subgrade Base Subgrade 
Lane Lane Lane Lane 

Test 
Location 

(m)1 

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 
  10 
  20 
  30 
  40 
  50 
  60 
  70 
  80 
  90 
100 

3 
- 
- 
4 
- 
- 
4 
- 
- 
4 

- 
3 
- 
- 
4 
- 
- 
4 
- 
- 

- 
- 
3 
- 
- 
4 
- 
- 
4 
- 

9 
- 
- 
9 
- 
- 

10 
- 
- 

11 

- 
8 
- 
- 
9 
- 
- 

10 
- 
- 

- 
- 
7 
- 
- 
9 
- 
- 
7 
- 

430 (62) 
- 
- 

332 (48) 
- 
- 

255 (37) 
- 
- 

259 (38) 

- 
395 (57) 

- 
- 

299 (43) 
- 
- 

260 (38) 
- 
- 

- 
- 

320 (46) 
- 
- 

279 (41) 
- 
- 

273 (40) 
- 

111 (16) 
- 
- 

114 (17) 
- 
- 

99 (14) 
- 
- 

116 (17) 

- 
119 (17) 

- 
- 

107 (16) 
- 
- 

105 (15) 
- 
- 

- 
- 

139 (20) 
- 
- 

137 (20) 
- 
- 

148 (22) 
- 

1 Measured from southwest corner of the track. 2 Estimated from DCP software tool. 
 

2.6 Bottom Lift Asphalt Concrete Construction 

2.6.1 Material Properties 

Dense-graded asphalt concrete for the bottom lift was sourced from Teichert’s Woodland Asphalt Plant. 

Key material properties are summarized in Table 2.6. The material met Caltrans specifications. 

Table 2.6:  Key Bottom Lift HMA Mix Design Parameters 
Wearing Course Parameter 

Actual Target Specification Compliance 
Grading: 1" (25 mm) 
 3/4" (19 mm) 
 1/2" (12.5 mm) 
 3/8" (9.5 mm) 
 #4 (4.75 mm) 
 #8 (2.36 mm) 
 #16 (1.18 mm) 
 #30 (600 μm) 
 #50 (300 μm) 
 #100 (150 μm) 
 #200 (75 μm) 

100 
98 
84 
75 
52 
34 
22 
15 
9 
6 
4 

100 
100 
98 
83 
40 
23 
– 

12 
– 
– 
5 

100 
100 

  90 – 100 
77 – 89 
33 – 47 
18 – 28 

– 
– 
– 
– 

3 – 7 

100 
100 

90 – 100 
76 – 90 
30 – 44 
6 – 26 

– 
– 
– 
– 

0 – 8 
Asphalt binder grade 
Asphalt binder content (% by aggregate mass) 
Hveem stability at optimum bitumen content 
Air-void content (%) 
Dust proportion 
Voids in mineral aggregate (LP-2) (%) 
Voids filled with asphalt (LP-3) (%) 
Crushed particles (1 face) (%) 
Sand equivalent (%) 
Fine aggregate angularity (%) 
Los Angeles Abrasion at 100 repetitions (%) 
Los Angeles Abrasion at 500 repetitions (%) 

PG 64-16 
  5.0 
41.0 
  4.0 
0.9 

13.0 
69.0 
92 

71.0 
54.0 
  5.0 
21.3 

- 
– 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

– 
– 

>37 
2 – 6 

0.6 – 1.3 
>13 

65 – 75 
>90 
>47 
>47 
<12 
<45 

- 
– 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
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2.6.2 Equipment 

The following equipment was used during the construction of the bottom lift of asphalt concrete: 

 Terex Cedar Rapids CR552 paver and material transfer device 
 Caterpillar CB-534D vibrating steel twin-drum roller (two) 
 Ingersoll Rand PT-240R pneumatic tire roller 

 

2.6.3 Prime Coat Application 

On the day before the prime coat application (October 22, 2009), the test track was compacted with a 

twin-drum steel roller to consolidate the base layer and accelerate movement of infiltrated water to the 

surface. An SS-1 asphalt emulsion prime coat was applied to the surface at a rate of 0.25 gal./yd2 

(1.0 L/m2). The time of application was 1:00 p.m., ambient temperature was 88°F (35°C), and relative 

humidity was 28 percent. A consistent application was achieved (Figure 2.24); however, differential 

penetration was observed, which was attributed to patches of near-surface moisture (Figure 2.25). 

 

  

Figure 2.24:  Prime coat application. Figure 2.25:  Differential penetration of prime 
coat. 

 

2.6.4 Asphalt Placement 

The bottom lift of asphalt concrete was placed on October 30, 2009. Construction started at approximately 

8:30 a.m. Ambient air temperature was 50°F (10°C) and the relative humidity was 45 percent. 

Construction was completed at approximately 11:00 a.m. when ambient temperature was 61°F (16°C) and 

the relative humidity was 40 percent. 

 

Mix was transported using bottom-dump trucks and placed in a windrow on the surface. Paving started in 

Lane #1, followed by Lanes #2 and #3, and was carried out in a west-east direction. A pickup machine 

connected to the paver collected the material and fed it into the paver hopper. Paving followed 

conventional procedures. The breakdown roller closely followed the paver applying about four passes. A 
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single pass was made with the intermediate rubber-tired roller, followed by another four passes with the 

finish roller. The construction process is summarized in Figure 2.26. 

 

  
Placing asphalt in windrow Paving and breakdown rolling 

  
Intermediate rolling Final rolling 

Figure 2.26:  Construction of bottom lift asphalt concrete layer. 
 

2.6.5 Construction Quality Control 

Compaction was measured by the UCPRC using a nuclear gauge on the day after construction using the 

mix design specific gravity values. Measurements were taken at 33 ft. (10 m) intervals along the center 

line of each lane, with a focus on checking densities in the areas that would be used for HVS testing. A 

summary of the results is provided in Table 2.7. The results indicate that there was very little variability in 

the measurements and that satisfactory compaction had been achieved. 
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Table 2.7:  Summary of Bottom Layer Asphalt Concrete Density Measurements 
Lane #1 Lane #2 Lane #3 

Gauge Relative Gauge Relative Gauge Relative 
Position 

lb/ft3 kg/m3 (%) lb/ft3 kg/m3 (%) lb/ft3 kg/m3 (%) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

146.0 
145.3 
147.8 
149.2 
146.1 
146.5 
145.2 
147.7 
147.0 
145.9 

2,339 
2,328 
2,367 
2,390 
2,341 
2,346 
2,326 
2,366 
2,355 
2,337 

93 
93 
95 
95 
93 
94 
93 
94 
94 
93 

148.3 
148.3 
148.6 
147.1 
145.6 
148.7 
145.8 
146.2 
144.9 
146.8 

2,376 
2,375 
2,380 
2,357 
2,333 
2,382 
2,336 
2,342 
2,321 
2,351 

95 
95 
95 
94 
93 
95 
93 
94 
93 
94 

146.0 
145.5 
145.3 
146.5 
147.8 
146.1 
147.7 
148.3 
147.1 
144.9 

2,338 
2,330 
2,327 
2,346 
2,367 
2,341 
2,366 
2,376 
2,357 
2,321 

93 
93 
93 
94 
95 
93 
94 
95 
94 
93 

Average 
Std. Dev. 

146.7 
1.3 

2,350 
0.020 

94 
0.8 

146.5 
1.4 

2,347 
0.019 

94 
0.8 

146.5 
1.2 

2,347 
0.019 

94 
0.8 

RICE 2.504  
 

2.7 Rubberized Gap-Graded Asphalt Concrete Construction 

2.7.1 Plant Modifications 

No plant modifications were required to incorporate the warm-mix technologies. The Gencor Ultrafoam 

apparatus is integral to the asphalt plant. The Cecabase and Evotherm technologies were added via the 

liquid anti-strip system, which is also integral to the asphalt plant. All delivery systems were approved 

under the Caltrans Material Plant Quality Program. 

 

2.7.2 Material Properties 

A Caltrans-approved mix design, prepared by Granite Construction Company’s Bradshaw Plant to meet 

Caltrans specifications for 1/2 in. (12.5 mm) gap-graded rubberized hot-mix asphalt (RHMA-G), was used 

for the experiment (Appendix A). Key parameters for the mix design are summarized in Table 2.8. The 

mix design was not adjusted for accommodation of the warm-mix technologies. 

 

2.7.3 Warm-Mix Technology Application Rates 

The warm-mix additive application rates were determined by the additive suppliers and were as follows: 

 Cecabase:  0.5 percent by mass of binder 
 Evotherm:  0.5 percent by mass of binder 
 Gencor (water): 1.5 percent by mass of binder 

 

2.7.4 Mix Production Temperatures 

Mix production and paving temperatures were not set for the project. Instead, each technology provider 

was requested to select their own production temperatures based on ambient temperatures, haul distance, 

and discussions with the plant manager. Production temperatures were set as follows: 
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 Control: 320°F (160°C) 
 Cecabase: 266°F (130°C) 
 Evotherm: 248°F (125°C) 
 Gencor: 284°F (140°C) 

Table 2.8:  Key RHMA-G Mix Design Parameters 
Wearing Course Parameter 

Target Specification Compliance 
Grading: 3/4" (19 mm) 
 1/2" (12.5 mm) 
 3/8" (9.5 mm) 
 #4 (4.75 mm) 
 #8 (2.36 mm) 
 #16 (1.18 mm) 
 #30 (600 μm) 
 #50 (300 μm) 
 #100 (150 μm) 
 #200 (75 μm) 

100 
98 
83 
40 
23 
– 

12 
– 
– 
5 

100 
  90 – 100 
77 – 89 
33 – 47 
18 – 28 

– 
– 
– 
– 

3 – 7 

100 
90 – 100 
76 – 90 
30 – 44 
6 – 26 

– 
– 
– 
– 

0 – 8 
Asphalt binder grade 
Asphalt binder source 
Asphalt binder content (% by mass of aggregate) 
Rubber content (% by mass of binder) 
 Scrap tire rubber (%) 
 High natural rubber (%) 
Extender oil (Raffex 120/Tricor, % by mass of binder) 
Hveem stability at recommended bitumen content 
Air-void content (%) 
Voids in mineral aggregate (LP-2) (%) 
Voids filled with asphalt (LP-3) (%) 
Crushed particles (1 face) (%) 
Sand equivalent (%) 
Fine aggregate angularity (%) 
Los Angeles Abrasion at 100 repetitions (%) 
Los Angeles Abrasion at 500 repetitions (%) 

PG 64-16 
Paramount 

       7.0 
     18.0 
     75.0 
     25.0 
       2.5 
     35.0 
       4.5 
     18.9 
     76.5 
      100 
     71.0 
     46.0 
       3.0 
     15.0 

– 
– 
– 
– 
– 
– 
– 

23 
4 ± 2 
>18 

65 – 75 
>90 
>47 
>45 
<10 
<45 

- 
– 
– 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 

2.7.5 Mix Production 

Mix production was overseen by technical representatives from each of the additive suppliers. 

 

The control and warm mixes were produced and placed on April 7, 2010. The start of asphalt production 

was delayed until approximately 9:00 a.m. because of cold ambient air temperatures. Production began 

with the Control mix, followed by the Gencor, Evotherm, and Cecabase mixes. Approximately 150 tonnes 

of each mix were produced. Mix was stored in insulated silos for a limited time before load out and 

transport. The first approximately 20 tonnes of each mix was “wasted” to ensure that a consistent mix was 

used on the test track. The drum plant was also run for a short period with no warm-mix technology at the 

end of each production run to prevent any contamination of the next mix. This material was also wasted. 

 

Plant emissions were not monitored due to the small volume of each mix produced. 
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2.7.6 Mix Production Quality Control 

Asphalt Binder 

A certificate of compliance was provided by the binder supplier with the delivery prior to modification 

with the rubber at the Granite Bradshaw plant. Rubber was added to the binder in an initial reaction time 

of 45 minutes at 375°F (190°C). Quality control data is provided in Table 2.9. 

Table 2.9:  Summary of Rubberized Binder Test Results 
Parameter Result 

Binder content (%) 
Extender content (%) 
Crumb rubber (tire) (%) 
Crumb rubber (natural) (%) 
Total 

79.9 
  2.1 
13.5 
  4.5 
100 

 

Minutes of Reaction Time   
45 60 90 120 240 360 1,440 Limits 

Cone penetration @ 77°F 
Resilience @ 77°F 
Field softening (°F) 
Viscosity (Centipoises) 

     25 
     39 
   148 
2,300 

 
 
 

2,900 

 
 
 

3,300 

 
 
 

3,500 

     27 
     31 
   148 
2,700 

 
 
 

2,800 

     55 
     29 
   152 
3,000 

25 – 70 
> 18 

125 – 165 
1,500 – 4,000

 

Asphalt Mix 

Quality control of the mixes produced for the test track was undertaken by Granite Construction Company 

on mix sampled from the trucks at the silos. Hveem stabilities were determined at three different intervals 

on mix sampled from the paver during construction of the test track. The results are summarized in 

Table 2.10. 

 

The following observations were made: 

 The aggregate gradation generally met the target and was within the required ranges. The material 
passing the #4 (4.75 mm) sieve was slightly below (0.7%) the specified range. 

 The binder contents of all mixes were slightly above the high limit of the target (between 0.2 and 
0.4 percent). These differences were taken into consideration in performance discussions in 
Chapter 4 and Chapter 6. 

 The maximum and bulk specific gravities of the four mixes were within a very close range and the 
differences were unlikely to influence performance in any way. 

 Hveem stabilities were similar for all mixes and well above the minimum specified requirement of 
23. The stabilities increased slightly for the samples that were cured before testing. 

 There was essentially no moisture measured in any of the samples after mix production. 
 

2.7.7 Paving Equipment 

The following equipment was used during placement of the rubberized asphalt layer: 

 Terex Cedar Rapids CR552 paver and material transfer device 
 Caterpillar CB-534D vibrating steel twin drum roller (two) 
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Table 2.10:  Quality Control of Mix After Production 
Parameter Specification/ 

Target 
Control Gencor Evotherm Cecabase 

Grading1 

 3/4" (19 mm) 
 1/2" (12.5 mm) 
 3/8" (9.5 mm) 
 #4 (4.75 mm) 
 #8 (2.36 mm) 
 #16 (1.18 mm) 
 #30 (0.6 mm) 
 #50 (0.3 mm) 
 #100 (0.15 mm) 
 #200 (0.075 mm 

 
100 

  90 – 100 
78 – 88 
32 – 42 
17 – 25 

– 
  7 – 15 

– 
– 

2 – 7 

 
100.0 
  99.4 
  78.3 
  31.3 
  19.2 
  13.2 
    9.8 
    7.4 
    5.6 
    4.1 

 
Not tested 

 
Not tested 

 
Not tested 

Sand equivalent2  68 Not tested Not tested Not tested 
AC Binder Content (%)3 6.55 – 7.45 7.73 7.86 7.69 7.67 
Max. Specific Gravity4 
 AC plant 
Bulk Specific Gravity 
 Paver, immediate 
 Paver, 3 hour cure 
 Paver, cool + reheat + cure 
Unit Weight (lb/f3 [kg/m3] 
 AC plant 

 
– 
 

– 
– 
– 
 

– 

 
2.483 

 
2.458 
2.449 
2.452 

 
154.6 (2,482) 

 
2.489 

 
2.456 
2.449 
2.450 

 
154.9 (2,482) 

 
2.482 

 
2.442 
2.446 
2.433 

 
154.5 (2,475) 

 
2.493 

 
2.442 
2.445 
2.444 

 
155.2 (2,486) 

Hveem stability5 

 Paver, immediate 
 Paver, 3-hour cure 
 Paver, cool + reheat + cure 

 
– 
– 
– 

 
27 
30 
31 

 
28 
30 
29 

 
27 
28 
30 

 
27 
29 
29 

Moisture (before plant) (%) 
Moisture6 (after silo) (%) 

– 
1.0 

Not tested 
0.00 

Not tested 
0.00 

Not tested 
0.04 

Not tested 
0.02 

1 CT 202 2 CT 217 3 CT 382 4 CT 308 5 CT 366 6 CT 370 

Underlined entries indicate that specification/target were not met 
 

2.7.8 Tack Coat Application 

The test track was broomed to remove dust and organic matter from the surface prior to any work 

undertaken. Tack coat was applied to Lane #1 in a single pass at 8:25 a.m., and to the Cecabase section 

(Cell #4 in Lane #2) at 10:50 a.m. (Figure 2.27). A diluted SS-1 emulsion (70:30) was applied with a 

distributor at an application rate of approximately 0.08 gal./yd2 (0.36 L/m2). Some steam was observed 

during application. Weather conditions at the time of tack coat application were as follows: 

 Air temperature:  46°F (8°C) 
 Surface temperature: 54°F (12°C) 
 Relative humidity: 68 percent 
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Figure 2.27:  Tack coat application. 
 

2.7.9 Asphalt Placement 

Control Section 

Placement of the asphalt concrete on the Control section started at 9:20 a.m. with the positioning of the 

paver at the start of the section. Three loads were used and the paver reached the end of the section eight 

minutes after starting. Considerable smoke was observed from the trucks during tipping and from the 

paver (Figure 2.28). A pungent odor, typical of rubberized asphalt construction projects, was also noted. 

The paving crew wore respirators to limit the effects of these odors (Figure 2.29). Breakdown rolling 

started as soon as the paver was moved off of the section. Density and temperature measurements were 

taken throughout (see Section 2.7.6). Seven passes were made with the breakdown roller with vibration 

over a period of approximately 15 minutes (Figure 2.30). Some cooling was allowed before final rolling, 

which consisted of five passes with no vibration (Figure 2.31). No significant tenderness was observed 

and the roller operator considered the exercise typical of normal rubberized asphalt projects. Paver 

spillage was removed from the end of the section to ensure a clean and regular surface and join for the 

Gencor section. 

 

  

Figure 2.28:  Control:  Smoke from truck and 
paver. 

Figure 2.29:  Control:  Paver operator wearing 
respirator. 
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Figure 2.30:  Control:  Breakdown rolling. Figure 2.31:  Control:  Final rolling. 
 

Gencor Section 

The same process described above was followed for the placement of the Gencor mix, which started at 

9:45 a.m. Some smoke was observed and odors noted, but the intensity was considerably less than that 

observed/noted on the Control section (Figure 2.32). Breakdown rolling was achieved with eight passes, 

followed by a further four passes after a short period of cooling (Figure 2.33). Final rolling was completed 

in ten passes. No problems were observed during any of the compaction phases and a tightly bound 

surface was achieved. When interviewed, the roller operator noted that the mat was a little tender and 

responded a little differently to typical rubberized asphalt projects in that the response of the roller did not 

relate to the density measurements with the nuclear gauge. The operator had considered compaction to be 

complete; however, the density gauge indicated that compaction levels were not the same as those 

measured on the Control section and consequently the additional roller passes were applied. The paving 

crew noted that workability of this mix in terms of raking and shoveling was better than the Control, 

which was stiff and adhered to tools. 

 

  

Figure 2.32:  Gencor:  Smoke from truck and 
paver. 

Figure 2.33:  Gencor:  Breakdown rolling. 
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Evotherm Section 

The same process followed for the previous two sections was also followed for the Evotherm mix. 

Construction started at 10:35 a.m. No smoke or odors were observed/noted (Figure 2.34). Eight passes 

were made with the breakdown roller, followed by another four passes after a period of cooling 

(Figure 2.35). Ten passes were applied during final rolling. Some tenderness was observed during 

breakdown rolling and the roller operator noted similar “discrepancies” between roller response and 

density gauge readings discussed above, when compared to typical rubberized asphalt projects. The 

paving crew noted that the workability of the mix was better than the previous two mixes, especially with 

regard to raking and shoveling (Figure 2.36), and was comparable to nonrubberized mixes. The crew also 

removed their respirators during paving of this section given the absence of smoke and odors. 

 

  

Figure 2.34:  Evotherm:  No smoke from truck 
and paver. 

Figure 2.35:  Evotherm:  Breakdown rolling. 

 

Figure 2.36:  Evotherm:  Improved workability. 
 

Cecabase Section 

The same process followed for the previous three sections was also followed for the Cecabase mix. 

Construction started at 11:45 a.m. No smoke or odors were observed/noted (Figure 2.37). Ten initial 

passes were made with the breakdown roller (Figure 2.38), followed by a further four passes after a period 
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of cooling. Final rolling consisted of 12 passes. Some tenderness was noted and the roller operator stated 

that the Evotherm and Cecabase mixes behaved in a similar way. The paving crew also noted similar good 

workability to that noted for the Evotherm mix (Figure 2.39). 

 

  

Figure 2.37:  Cecabase:  No smoke from truck 
and paver. 

Figure 2.38:  Cecabase:  Breakdown rolling. 

 

Figure 2.39:  Cecabase:  Improved workability. 
 

General 

All construction was completed at 1:10 p.m. The surface of the completed cells appeared to have a 

uniform color and appearance (Figure 2.40). 

 

2.7.10 Construction Quality Control 

Quality control, both during and after construction, was undertaken jointly by Teichert Construction, the 

UCPRC, and an appointed contractor, and included: 

 Placement and compaction temperatures 
 Thickness 
 Compaction density 
 Deflection 
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Figure 2.40:  Completed construction. 
 

Placement and Compaction Temperatures 

Temperatures were systematically measured throughout the placement of the asphalt concrete using 

infrared temperature guns, thermocouples, and an infrared camera. Measurements of the following were 

included: 

 Surface prior to start of paving 
 Mix as it was tipped into the paver 
 Mix behind the paver 
 Mat before and during compaction 

 

A summary of the measurements is provided in Table 2.11 and in Figure 2.41 and Figure 2.42. 

 

The following observations were made: 

 Ambient and paving temperatures were considered representative of early- or late-season paving. 
 Paving and compaction temperatures were consistent with production temperatures, as expected. 
 There was no significant drop in temperature during the approximate 60 minute haul in covered 

trucks. 
 Ambient temperatures at the start of paving increased slightly for each section, as expected. 
 There was very little temperature difference between the material being tipped into the paver and 

the mat behind the paver before compaction. 
 Mid-depth temperatures on the Evotherm and Cecabase sections decreased at a slower rate than the 

Control and Gencor sections, consistent with the differences in production temperatures. 
 

Thermal camera images (FLIR Systems ThermaCAM PM290, recorded by T.J. Holland of Caltrans) of the 

mat behind the paver are shown in Figure 2.43. The images clearly show consistent temperature across the 

mat on all sections. (Note that temperature scales on the right side of the photographs differ between 

images.) 
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Table 2.11:  Summary of Temperature Measurements 
Temperature (°F)1 Measuring Point 

Control Gencor Evotherm Cecabase 
Production 
Ambient at start of paving 
Surface before paving2 
Truck2 

Paver2 

Mat before compaction2 

Mat at end of compaction2 

Mid-depth at start of  compaction3 
Mid-depth at end of compaction3 
Ambient at end of compaction 

320 
  54 
  57 
266 
309 
293 
151 
309 
153 
  57 

284 
  55 
  66 
257 
262 
234 
144 
264 
135 
  58 

248 
  59 
  77 
248 
248 
219 
165 
235 
124 
  61 

266 
  61 
  84 
264 
261 
232 
156 
259 
151 
  63 

Temperature (°C)1 Measuring Point 
Control Gencor Evotherm Cecabase 

Production 
Ambient at start of paving 
Surface before paving2 
Truck2 

Paver2 

Mat before compaction2 

Mat at end of compaction2 

Mid-depth at start of compaction3 
Mid-depth at end of compaction3 
Ambient at end of compaction 

160 
  12 
  14 
130 
154 
145 
  66 
154 
  67 
  14 

140 
  13 
  19 
125 
128 
112 
  62 
129 
  57 
  14 

125 
  15 
  25 
120 
120 
104 
  74 
113 
  51 
  16 

130 
  16 
  29 
129 
127 
111 
  69 
126 
  66 
  17 

1  Average of three sets of measurements 2  Measured with a temperature gun 3  Measured with a thermocouple 
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Figure 2.41:  Summary of temperature measurements. 
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Figure 2.42:  Summary of mid-depth temperatures over time. 
 

  
Control Gencor 

  
Evotherm Cecabase 

Figure 2.43:  Thermal images of test track during construction. 
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Thickness 

Thickness was monitored with probes by the paving crew throughout the construction process. The 

thickness of the slabs and cores removed for laboratory testing after construction (see Section 2.8) was 

measured for quality control purposes. The results of these measurements are summarized in Table 2.12. 

Layer thicknesses of actual Heavy Vehicle Simulator test sections were determined during forensic 

investigations after testing and are discussed in Section 5.7. 

Table 2.12:  Summary of Asphalt Layer Thickness 
Control Gencor Evotherm Cecabase Measurement 

(ft.) (mm) (ft.) (mm) (ft.) (mm) (ft.) (mm) 
Surface layer 
Bottom layer 

0.22 
0.23 

65 
74 

0.22 
0.23 

65 
72 

0.22 
0.23 

65 
68 

0.22 
0.24 

67 
70 

Total 0.45 139 0.45 137 0.45 133 0.46 137 
 

The average thickness of the combined two layers was 0.45 ft. (137 mm), 0.05 ft. (17 mm) thicker than the 

design thickness of 0.4 ft. (120 mm). General consistency of thickness across the track was considered 

satisfactory and representative of typical construction projects. 

 

Compaction Density 

Compaction was monitored using nuclear gauges throughout the construction process using the mix 

design specific gravity values. Given the very small quantities of mix produced for each technology, 

actual mix specific gravities were not available before completion of construction of each section. The 

results were used to manage the number of roller passes and roller settings and were monitored but not 

recorded. 

 

Final density measurements were taken on June 18, 2010, by an independent consultant using a calibrated 

nuclear gauge. Measurements were taken on each section according to the plan shown in Figure 2.44, 

which focused primarily on checking densities in the areas selected for HVS testing, but also to assess 

variability across each section. A summary of the results is provided in Table 2.13. The results indicate 

that there was very little variability across the sections and that slightly better densities were achieved on 

the Control section compared to the warm-mix sections, but that relatively poor compaction was achieved 

overall. This did not correspond to actual measurements taken on the day of construction, which indicated 

that acceptable densities had been achieved. A series of cores were therefore taken from positions 7 

through 10 (Figure 2.44) to check these densities in the laboratory using the CoreLok method. The results 

are summarized in Table 2.14 and indicate that higher densities were actually achieved. Air-void contents 

were also determined on each specimen sampled from the test track for laboratory testing. The results for 

these tests, which are similar to the results shown in Table 2.14, are discussed in Chapter 6. It is not clear 
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why there was a considerable difference between the gauge- and core-determined densities. Core-

determined densities were used for all analyses in this study. 

 

 

Figure 2.44:  Asphalt concrete density measurement plan. 
 

Table 2.13:  Summary of Rubberized Asphalt Concrete Density Measurements 
Control Gencor Evotherm Cecabase Position 

Gauge 
(kg/m3) 

Relative 
(%) 

Gauge 
(kg/m3) 

Relative 
(%) 

Gauge 
(kg/m3) 

Relative 
(%) 

Gauge 
(kg/m3) 

Relative 
(%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2,221 
2,204 
2,228 
2,236 
2,234 
2,257 
2,243 
2,300 
2,280 
2,259 

89 
89 
90 
90 
90 
91 
90 
93 
92 
91 

2,194 
2,125 
2,173 
2,169 
2,223 
2,171 
2,273 
2,247 
2,224 
2,300 

88 
85 
87 
87 
89 
87 
91 
90 
89 
92 

2,150 
2,213 
2,219 
2,148 
2,164 
2,123 
2,202 
2,234 
2,239 
2,224 

87 
89 
89 
87 
87 
86 
89 
90 
90 
90 

2,234 
2,188 
2,280 
2,185 
2,155 
2,195 
2,213 
2,274 
2,238 
2,263 

90 
88 
91 
88 
86 
88 
89 
91 
90 
91 

Average 2,246 90 2,210 89 2,192 88 2,223 89 
RICE 2.483 2.489 2.482 2.493 

 

Table 2.14:  Summary of Asphalt Concrete Density Measurements from Cores 
Control Gencor Evotherm Cecabase Position 

Air-Void 
(%) 

Relative 
(%) 

Air-Void 
(%) 

Relative 
(%) 

Air-Void 
(%) 

Relative 
(%) 

Air-Void 
(%) 

Relative 
(%) 

7 
8 
9 

10 

5.2 
5.1 
4.6 
4.5 

95 
95 
95 
95 

6.5 
6.7 
6.0 
5.8 

93 
93 
94 
94 

6.5 
6.4 
5.9 
5.9 

93 
94 
94 
94 

6.4 
6.2 
6.5 
6.6 

94 
94 
93 
93 

Average 4.9 95 6.3 94 6.2 94 6.4 94 
 

Deflection 

Falling weight deflectometer (FWD) measurements were taken on May 27 and May 28, 2010, at 1.0 m 

intervals along the centerline of each lane to assess general variability across the test track. Average 

results of the second 40 kN load drop are summarized in Table 2.15 and in Figure 2.45 and Figure 2.46. 

The D1 sensor data were used to obtain an indication of overall pavement deflection. The D2 sensor data 

were used to obtain an indication of deflection in the asphalt layers. The D3 and D5 sensor data were used 

N 
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to obtain an indication of deflection in the top and bottom of the base respectively, and the D6 sensor data 

were used to obtain an indication of deflection in the subgrade. All deflection measurements were 

normalized to 40 kN by proportioning at 20°C pavement temperature at 40 mm depth (i.e., one-third of the 

total asphalt concrete thickness) using the Bells Temperature calculated from actual air and surface 

temperatures. 

 

There was no significant difference in the deflections measured on Lane #1 (Control, Gencor, and 

Evotherm sections). Deflections on the Cecabase section were lower than on the other three sections, 

indicating a marginally stiffer structure. Deflections were higher at the start and end of each section, but 

consistent in the middle 80 ft. (25 m) where the HVS test sections would be positioned. 

Table 2.15:  Summary of Average FWD Deflection Measurements 
Deflection (micron) Section 

Control Gencor Evotherm Cecabase 
 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Sensor D11 
Sensor D22 
Sensor D33 
Sensor D54 
Sensor D65 

586 
403 
308 
141 
87 

76 
61 
50 
23 
12 

567 
391 
301 
144 
93 

41 
39 
37 
23 
14 

609 
404 
301 
136 
85 

52 
35 
24 
12 
9 

471 
308 
230 
107 
70 

27 
15 
12 
4 
2 

Section Average Temperatures Measured 
Air 
Surface 

14.4 
21.7 

0.2 
0.9 

14.6 
21.9 

0.2 
0.9 

15.6 
24.2 

0.4 
1.6 

15.2 
21.8 

1.5 
2.9 

1 Geophone D1, 0 mm offset 
4 Geophone D5, 630 mm offset 

2 Geophone D2, 150 mm offset 
5 Geophone D6, 925 mm offset 

3 Geophone D3, 315 mm offset 
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Figure 2.45:  Summary of average deflection by section (40 kN load at 20°C). 
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Figure 2.46:  Summary of Sensor-1 deflection measurements. 
 

2.8 Sampling 

Specimens in the form of 6.0 in. (152 mm) diameter cores and 20 in. by 10 in. (500 mm by 250 mm) slabs 

were sawn from the middle of each section adjacent to the planned HVS test sections for laboratory 

testing, as shown in Figure 2.47. Slabs were sawn to the bottom of the combined asphalt concrete layers, 

extracted, stored on pallets, and then transported to the UCPRC Richmond Field Station laboratory. 

Inspection of the slabs indicated that the asphalt concrete was well bonded to the top of the base-course 

material, and that the two asphalt layers were well bonded to each other. 

 

0m 18.5m 37m

5m

0m
8m HVS Section

0 16

600mm

NN
Sampling area

 

Figure 2.47:  Sampling location for laboratory specimens. 
 

2.9 Postconstruction Observations 

A number of relatively heavy rainfall events occurred in the period between the end of construction and 

the commencement of HVS testing. After initial dryback of the sections, seepage of water from hairline 

cracks was noted on the Cecabase section (Figure 2.48), and from the longitudinal joint between the 
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Cecabase and Control sections (Figure 2.49). This was attributed to final compaction at low temperatures 

and would be taken into consideration in the analysis of HVS test results. 

 

  

Figure 2.48:  Water seepage from Cecabase section. 

 

Figure 2.49:  Water seepage from longitudinal joint between Cecabase and Control sections. 
 

2.10 Construction Summary 

Key observations from the test track construction process include the following: 

 Preparation of the subgrade resulted in a generally consistent platform on which to construct the 
base. Density measurements taken after final compaction indicated an average relative compaction 
of 97 percent of the laboratory-determined value, with very little variation across the track. 

 Construction of the base-course followed conventional procedures. Measurements after final 
compaction indicated that the average dry density was 98 percent of the laboratory-determined 
maximum dry density with very little variation across the track. The final surface was tightly bound 
and free of loose material. Heavy rainfall after construction resulted in some loosening of the 
surface, and the layer was consequently recompacted prior to paving the bottom lift of asphalt 
concrete. 
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 Placement of the bottom lift of hot-mix asphalt followed conventional procedures. Thickness and 
compaction appeared to be consistent across the test track. 

 Minimal asphalt plant modifications were required to accommodate the warm-mix additives. These 
complied with the Caltrans Material Plant Quality Program requirements. 

 No problems were noted with producing the asphalt mixes at the lower temperatures. Target mix 
production temperatures (320°F, 284°F, 248°F, and 266°F [160°C, 125°C, 140°C, and 130°C] for 
the Control, Gencor, Evotherm, and Cecabase mixes, respectively), set by the warm-mix technology 
providers, were all achieved. 

 The rubberized binder, with 18 percent rubber content, complied with the specification 
requirements. 

 All mixes met the project mix design requirements, with little variability between the mixes. Binder 
contents were 7.7, 7.9, 7.7, and 7.7 percent for the Control, Gencor, Evotherm, and Cecabase mixes, 
respectively. Hveem stabilities, determined at three different curing regimes, exceeded the 
minimum requirement by a considerable margin. Curing did not appear to influence the stability. 

 No moisture was measured in the mixes after production. 
 Compaction temperatures differed considerably between the mixes and were consistent with 

production temperatures. The Evotherm and Cecabase mixes, produced at 248°F and 266°F (140°C 
and 130°C), respectively, lost heat during transport and placement at a slower rate than the Control 
and Gencor mixes, which were produced at higher temperatures. The lower temperatures of the 
three warm-mixes did not appear to influence the paving or compaction operations, and interviews 
with the paving crew after construction revealed that no problems were experienced at the lower 
temperatures. Improved working conditions were identified as an advantage. 

 Smoke and odors were significantly more severe during construction of the Control section 
compared to the Gencor section. No smoke or odors were noted during construction of the 
Evotherm and Cecabase sections. 

 Mix workability, determined through observations of and interviews with the paving crew, was 
considerably better on the warm-mix sections compared to the Control. 

 Average thicknesses of the top (rubberized) and bottom asphalt layers across the four sections were 
0.22 ft. (66 mm) and 0.23 ft. (74 mm), respectively. The average thickness of the combined two 
layers was 0.45 ft. (137 mm), 0.5 ft. (17 mm) thicker than the design thickness of 0.4 ft. (120 mm). 
General consistency of thickness across the track was considered satisfactory and representative of 
typical construction projects. 

 Nuclear gauge–determined density measurements were inconsistent with core-determined air-void 
contents. The core-determined air-void contents indicated that slightly higher density was achieved 
on the Control section (95 percent of the RICE specific gravity) compared to the warm-mix sections 
(94 percent).  Compaction across the test track appeared to be consistent, showing that adequate 
compaction can be achieved on rubberized warm-mixes at lower temperatures. Based on 
observations from the test track construction and interviews with roller operators, optimal 
compaction temperatures will differ between the different warm-mix technologies. Therefore on 
projects where warm-mix technologies are used, roller operators will need to consider potential 
differences in roller response between warm-mix and conventional hot mixes, and may need to 
adjust rolling procedures to ensure that optimal compaction is always achieved. 
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 Deflection measurements showed that relatively consistent construction was achieved on the test 
track. Marginally lower deflection was recorded on the Cecabase section in Lane #2 compared to 
the other three sections. 

 

The test track was considered satisfactorily uniform for the purposes of accelerated pavement testing and 

sampling for laboratory testing. 
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3. TEST TRACK LAYOUT AND HVS TEST CRITERIA 

3.1 Protocols 

Heavy Vehicle Simulator (HVS) test section layout, test setup, trafficking, and measurements followed 

standard University of California Pavement Research Center (UCPRC) protocols (8). 

 

3.2 Test Track Layout 

The Phase 3 Warm-Mix Asphalt Study test track layout is shown in Figure 3.1. Four HVS test sections 

were demarcated for the first phase of HVS testing for early-age rutting at high temperatures, and testing 

was carried out in the same order as construction (i.e., Control followed by warm-mixes in order of 

production). The section numbers allocated were as follows (HA refers to the specific HVS equipment 

used for testing): 

 Section 620HA:  Control 
 Section 621HA:  Gencor 
 Section 622HA:  Evotherm 
 Section 623HA:  Cecabase 

 

3.3 HVS Test Section Layout 

The general test section layout for each of the rutting sections is shown in Figure 3.2. Station numbers 

(0 to 16) refer to fixed points on the test section and are used for measurements and as a reference for 

discussing performance. 

 

3.4 Pavement Instrumentation and Monitoring Methods 

Measurements were taken with the instruments listed below. Instrument positions are shown in Figure 3.2. 

Detailed descriptions of the instrumentation and measuring equipment are included in Reference (8). 

Intervals between measurements, in terms of load repetitions, were selected to enable adequate 

characterization of the pavement as damage developed. 

 A laser profilometer was used to measure surface profile; measurements were taken at each station. 
 Thermocouples measured pavement temperature (at Stations 4 and 12) and ambient temperature at 

one-hour intervals during HVS operation. 
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Air temperatures were recorded by a weather station next to the test section at the same intervals as the 

thermocouples. Subgrade and base moisture contents were measured with two moisture sensors positioned 

in the middle of the test track. 

 

Control Evotherm

Cecabase

Gencor

37m 110m4 – 12m4 – 12m 41 – 49m

37m 55m 73m

5m

0m
41 – 49m

0 16

600mm

0m

5m

Caravan side

Traffic sideCab end

620HA

623HA

621HA

73m 77 – 85m

622HA

10m

15m

Spare sectionSpare section

Test Sequence
1. 620HA Control
2. 621HA Gencor
3. 622HA Evotherm
4. 623HA Cecabase

NN

Mix Design #2 Test Sections

 

Figure 3.1:  Layout of Phase 3 test track and Phase 3a HVS test sections. 
 

60 mm RHMA-G/RWMA-G

0 mm
25 mm
50 mm
90 mm

120 mm

0 mm
25 mm
50 mm
90 mm

120 mm

Thermocouple Thermocouple

60 mm DGAC

400 mm Aggregate Base

LEGEND

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

y

x

Station Number (unit: 0.5 m)

TS

CL

CS

0.6 m

Subgrade

NN

NOT TO SCALE

Thermocouple TS Traffic SideTS Traffic Side CL Center LineCL Center Line CS Caravan SideCS Caravan Side

Acceleration/
deceleration area

8.0 m8.0 m

Acceleration/
deceleration area

 

Figure 3.2:  Location of thermocouples. 
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Surface and in-depth deflections were not measured. Surface deflection cannot be measured with the road 

surface deflectometer (RSD) on rutted pavements. In-depth deflection measured with multi-depth 

deflectometers (MDD) was not possible due to difficulties with installing and anchoring the instruments in 

the soft clay subgrade. 

 

3.5 HVS Test Criteria 

3.5.1 Test Section Failure Criteria 

An average maximum rut depth of 12.5 mm (0.5 in.) over the full monitored section (Station 3 to 

Station 13) was set as the failure criterion for the experiment. However; in most instances, HVS 

trafficking was continued past this point to fully understand the rutting behavior of each mix. 

 

3.5.2 Environmental Conditions 

The pavement temperature at 50 mm (2.0 in.) was maintained at 50°C4°C (122°F7°F) to assess rutting 

potential under typical pavement conditions. Infrared heaters inside a temperature control chamber were 

used to maintain the pavement temperature. The test sections received no direct rainfall as they were 

protected by the temperature control chamber. The sections were tested predominantly during the dry 

season (June through December). 

 

3.5.3 Test Duration 

HVS trafficking on each section was initiated and completed as shown in Table 3.1. 

Table 3.1:  Test Duration for Phase 3a HVS Rutting Tests 
Section Overlay Start Date Finish Date Repetitions 
620HA 
621HA 
622HA 
623HA 

Control 
Gencor 

Evotherm 
Cecabase 

06/25/2010 
07/15/2010 
08/05/2010 
10/20/2010 

07/13/2010 
08/03/2010 
09/03/2010 
12/07/2010 

74,000 
159,000 
200,000 
224,000 

 

3.5.4 Loading Program 

The HVS loading program for each section is summarized in Table 3.2. Equivalent Standard Axle Loads 

(ESALs) were determined using the following Caltrans conversion (Equation 3.1): 

ESALs =  (axle load/18,000)4.2 (3.1) 

 

All trafficking was carried out with a dual-wheel configuration, using radial truck tires (Goodyear G159 - 

11R22.5- steel belt radial) inflated to a pressure of 720 kPa (104 psi), in a channelized, unidirectional 

loading mode. Load was checked with a portable weigh-in-motion pad at the beginning of each test, after 

each load change, and at the end of each test. 
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Table 3.2:  Summary of HVS Loading Program 
Section Overlay Wheel Load1 

(kN) 
Repetitions ESALs2 

620HA Control 40   74,000      74,000 
621HA Gencor 40 159,000    159,000 
622HA Evotherm 40 

60 
160,000 
  40,000 

   160,000 
   219,606 

623HA Cecabase 40 
60 

160,000 
  64,000 

   160,000 
   351,369 

 Total 657,000 1,123,975 
1 40 kN = 9,000 lb.; 60 kN = 13,500 lb 2 ESAL:  Equivalent Standard Axle Load 
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4. PHASE 3a HVS TEST DATA SUMMARY 

4.1 Introduction 

This chapter provides a summary of the data collected from the four HVS tests (Sections 620HA through 

623HA) and a brief discussion of the first-level analysis. The data collected includes rainfall, air 

temperatures inside and outside the temperature control chamber, pavement temperatures, and surface 

permanent deformation (rutting). 

 

Pavement temperatures were controlled using the temperature control chamber. Both air (inside and 

outside the temperature box) and pavement temperatures were monitored and recorded hourly during the 

entire loading period. In assessing rutting performance, the temperature at the bottom of the asphalt 

concrete and the temperature gradient are two important controlling temperature parameters influencing 

the stiffness of the asphalt concrete and are used to compute plastic strain. Permanent deformation at the 

pavement surface (rutting) was monitored with a laser profilometer. In-depth permanent deformation at 

various depths within the pavement was not monitored due to the soft subgrade clay and associated 

difficulties with the installation and anchoring of multi-depth deflectometers. The following rut 

parameters were determined from these measurements, as illustrated in Figure 4.1: 

 Average maximum rut depth,  
 Average deformation, 
 Location and magnitude of the maximum rut depth, and 
 Rate of rut development. 
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Figure 4.1:  Illustration of maximum rut depth and average deformation of a leveled profile. 
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The laser profilometer provides sufficient information to evaluate the evolution of permanent surface 

deformation of the entire test section at various loading stages. The rut depth figures in this report show 

the average values over the entire section (Stations 3 through 13) as well as values for half sections 

between Stations 3 and 8 and Stations 9 and 13. These two additional data series were plotted to illustrate 

any differences along the length of the section. The precise nature of the permanent deformation was 

determined after the forensic investigation (test pits and cores) on each section and is discussed in 

Chapter 5. 

 

The data from each HVS test is presented separately, with the presentation of each test following the same 

format. Data plots are presented on the same scale, where possible, to facilitate comparisons of 

performance. 

 

4.2 Rainfall 

Figure 4.2 shows the monthly rainfall data from June 2010 through December 2010 as measured at the 

weather station next to the test track. Rainfall was measured during all four Phase 3a HVS tests. There 

were no significant 24 hour rainfall events. 
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Figure 4.2:  Measured rainfall during Phase 3a HVS testing. 
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4.3 Section 620HA:  Control 

4.3.1 Test Summary 

Loading commenced on June 25, 2010, and ended on July 13, 2010. A total of 74,000 load repetitions 

were applied and 18 datasets were collected. Testing was interrupted for five days (July 2, 2010, through 

July 7, 2010) due to a test carriage computer malfunction. The HVS loading history for Section 620HA is 

shown in Figure 4.3. 
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Figure 4.3:  620HA:  Load history. 
 

4.3.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.4. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 14°C to 40°C (58°F to 104°F) 

during the course of HVS testing, with a daily average of 28°C (82°F), an average minimum of 18°C 

(64°F), and an average maximum of 34°C (94°F). 

 

4.3.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 23°C to 50°C (75°F 

to 122°F) with an average of 42°C (108°F) and standard deviation of 2.9°C (5.2°F). Air temperature was 

adjusted to maintain a pavement temperature of 50°C4°C (122°F7°F), which is expected to promote 

rutting damage. The recorded pavement temperatures discussed in Section 4.3.4 indicate that the inside air 

temperatures were adjusted appropriately to maintain the required pavement temperature. The daily 
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average air temperatures recorded in the temperature control unit, calculated from the hourly temperatures 

recorded during HVS operation, are shown in Figure 4.5. Vertical error bars on each point on the graph 

show the daily temperature range. 

 

4.3.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.1 and shown in Figure 4.6. Pavement temperatures decreased slightly with increasing depth in the 

pavement, which was expected as there is usually a thermal gradient between the top and bottom of the 

asphalt concrete pavement layers. 

Table 4.1:  620HA:  Temperature Summary for Air and Pavement 
Temperature Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) 

Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

28 
42 
51 
51 
50 
49 
48 

– 
2.9 
1.6 
1.1 
0.7 
0.7 
0.9 

  82 
107 
123 
123 
122 
120 
118 

– 
5.2 
2.9 
2.0 
1.3 
1.3 
1.6 
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Figure 4.4:  620HA:  Daily average outside air temperatures. 
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Figure 4.5:  620HA:  Daily average inside air temperatures. 
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Figure 4.6:  620HA:  Daily average temperatures at pavement surface and at various depths. 
 

4.3.5 Permanent Surface Deformation (Rutting) 

Figure 4.7 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test. This plot clearly shows the increase in rutting and deformation over the duration of the 

test. 
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Figure 4.7:  620HA:  Profilometer cross section at various load repetitions. 
 

During HVS testing, rutting usually occurs at a high rate initially, and then it typically diminishes as 

trafficking progresses until reaching a steady state. This initial phase is referred to as the “embedment” 

phase. Figure 4.8 and Figure 4.9 show the development of permanent deformation (average maximum rut 

and average deformation, respectively) with load repetitions as measured with the laser profilometer for 

the test section. The embedment phase, although relatively short in terms of the number of load repetitions 

(i.e., ± 5,000), ended with a fairly significant rut of about 8.0 mm (0.32 in.). It was not clear why this 

occurred given that the air-void content of the layer was within an acceptable range. The combination of 

asphalt age (approximately six weeks after placement), high pavement temperatures, and relatively high 

loading probably influenced performance. Error bars on the average readings indicate that there was very 

little variation along the length of the section. 

 

Figure 4.10 shows contour plots of the pavement surface at the start and end of the test (74,000 

repetitions) that also indicate minimal variation along the section. A slightly deeper rut was recorded in 

one of the wheel tracks, which was attributed to the positioning of the HVS on the crossfall of the section. 

Terminal rut depth (12.5 mm [0.5 in.]) was reached after 46,000 repetitions. Testing was continued for an 

additional 28,000 repetitions to further assess rutting trends. 

 

After completion of trafficking, the average maximum rut depth and the average deformation were 

13.5 mm (0.53 in.) and 6.4 mm (0.25 in.), respectively. The maximum rut depth measured on the section 

was 15.6 mm (0.61 in.), recorded at Station 5. 
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Figure 4.8:  620HA:  Average maximum rut. 
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Figure 4.9:  620HA:  Average deformation. 
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Figure 4.10:  620HA:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 

 

4.3.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section. Figure 4.11 is a photograph taken of the 

surface at the end of the test. 

 

Figure 4.11:  620HA:  Section photograph at test completion. 
 

4.4 Section 621HA:  Gencor 

4.4.1 Test Summary 

Loading commenced on July 16, 2010, and ended on August 03, 2010. A total of 159,000 load repetitions 

were applied and 23 datasets were collected. The HVS loading history for Section 621HA is shown in 

Figure 4.12. No breakdowns occurred during this test. 
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Figure 4.12:  621HA:  Load history. 
 

4.4.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.13. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 10°C to 45°C (50°F to 113°F) 

during the course of HVS testing, with a daily average of 25°C (77°F), an average minimum of 14°C 

(57°F), and an average maximum of 34°C (93°F). Outside air temperatures were in a similar range to 

those recorded during testing of the Control. 
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Figure 4.13:  621HA:  Daily average outside air temperatures. 
 



 

 
54 UCPRC-RR-2011-02 

4.4.3 Air Temperatures in the Temperature Control Unit 

During the test, the measured air temperatures inside the temperature control chamber ranged from 33°C 

to 53°C (91°F to 127°F) with an average of 42°C (108°F) and standard deviation of 3.7°C (6.7°F). The air 

temperature was adjusted to maintain a pavement temperature of 50°C4°C (122°F7°F). The daily 

average air temperatures recorded in the temperature control unit, calculated from the hourly temperatures 

recorded during HVS operation, are shown in Figure 4.14. Vertical error bars on each point on the graph 

show the daily temperature range. 
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Figure 4.14:  621HA:  Daily average inside air temperatures. 
 

4.4.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.2 and shown in Figure 4.15. Data for the Control section are included for comparison. 

Temperatures were very similar to those recorded on the Control section. Pavement temperatures 

decreased slightly with increasing depth in the pavement, as expected. Average pavement temperatures at 

all depths of Section 621HA were similar to those recorded on the Control. 

Table 4.2:  621HA:  Temperature Summary for Air and Pavement 
621HA 620HA Temperature 

Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

25 
42 
49 
50 
50 
49 
48 

- 
3.7 
1.3 
0.9 
0.7 
0.8 
0.9 

  77 
108 
120 
122 
122 
120 
118 

- 
6.7 
2.3 
1.6 
1.3 
1.4 
1.6 

28 
42 
51 
51 
50 
49 
48 
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Figure 4.15:  621HA:  Daily average temperatures at pavement surface and at various depths. 
 

4.4.5 Permanent Surface Deformation (Rutting) 

Figure 4.16 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test and shows the increase in rutting and deformation over time. 
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Figure 4.16:  621HA:  Profilometer cross section at various load repetitions. 
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Figure 4.17 and Figure 4.18 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the Control section (Section 620HA) are also shown for comparative purposes. 

Although the embedment phase was of similar duration for both sections, a slightly shallower average 

maximum rut was recorded on Section 621HA at the end of the embedment phase (6.5 mm [0.26 in.]) 

compared to the control (7.9 mm [0.31 in.]), despite this section having a slightly higher air-void content 

than the Control section (6.3 percent compared to 4.9 percent) and having thinner asphalt layers than the 

Control (see Section 5.7 for forensic investigation measurements). This behavior differs from earlier 

testing on dense-graded mixes with conventional binders, which have typically shown warm mixes to 

have deeper rutting than the control at the end of the embedment phases. The better rutting performance 

on this mix could be related to the additional “curing” time between construction and the start of HVS 

testing. These parameters are being investigated in another phase of the Caltrans warm-mix asphalt study 

and will be discussed in a separate report. After the embedment phase, the Gencor section continued to 

deform at a slightly slower rate than the control, equating to considerably more load repetitions being 

applied before the terminal rut depth of 12.5 mm (0.5 in.) was reached (112,000 repetitions compared to 

46,000 repetitions on the control). Average deformation (down rut) on the Gencor section was slightly 

higher than that recorded on the Control (6.7 mm [0.26 in.] compared to 6.4 mm [0.25 in.]). Error bars on 

the average reading indicate that there was very little variation along the length of the section. 
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Figure 4.17:  621HA:  Average maximum rut. 
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Figure 4.18:  621HA:  Average deformation. 
 

Figure 4.19 shows contour plots of the pavement surface at the start and end of the test (159,000 

repetitions), also indicating minimal variation along the section. 

 

After completion of trafficking, the average maximum rut depth and the average deformation were 

13.2 mm (0.52 in.) and 6.7 mm (0.26 in.), respectively. The maximum rut depth measured on the section 

was 13.8 mm (0.54 in.) recorded at Station 11. 
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Figure 4.19:  621HA:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 
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4.4.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section, which was similar in appearance to the 

Control (Figure 4.11) at the end of testing. Figure 4.20 shows a photograph taken of the surface at the end 

of the test. 

 

 

Figure 4.20:  621HA:  Section photograph at test completion. 
 

4.5 Section 622HA:  Evotherm 

4.5.1 Test Summary 

Loading commenced on August 9, 2010, and ended on September 3, 2010. A total of 200,000 load 

repetitions were applied and 29 datasets were collected. Terminal rut (i.e., 12.5 mm [0.5 in.]) was reached 

after 42,000 repetitions, which was very similar to the Control section (46,000). However, testing was 

continued for the additional 158,000 repetitions to gather rutting performance data for a separate 

mechanistic-empirical modeling study. Load was increased to 60 kN (13,500 lb) after 160,000 repetitions 

as part of this additional study. Results from this additional testing are not discussed in this report. The 

HVS loading history for Section 622HA is shown in Figure 4.21. A short carriage computer breakdown 

occurred in the latter part of the test. 
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Figure 4.21:  622HA:  Load history. 
 

4.5.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.22. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 11°C to 40°C (52°F to 104°F) 

during the course of HVS testing, with a daily average of 24°C (75°F), an average minimum of 16°C 

(61°F), and an average maximum of 31°C (88°F). Outside air temperatures were slightly cooler during 

testing on Section 622HA compared to those during testing of the Control. 
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Figure 4.22:  622HA:  Daily average outside air temperatures. 
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4.5.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 25°C to 55°C (77°F 

to 131°F) with an average of 42°C (108°F) and standard deviation of 2.6°C (4.7°F). The air temperature 

was adjusted to maintain a pavement temperature of 50°C4°C (122°F7°F). The daily average air 

temperatures recorded in the temperature control unit, calculated from the hourly temperatures recorded 

during HVS operation, are shown in Figure 4.23. Vertical errors bars on each point on the graph show the 

daily temperature range. 
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Figure 4.23:  622HA:  Daily average inside air temperatures. 
 

4.5.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.3 and shown in Figure 4.24. Pavement temperatures decreased slightly with increasing depth in 

the pavement, as expected. Average pavement temperatures at all depths of Section 622HA were similar 

to those recorded on the Control, despite slightly lower outside temperatures. 

Table 4.3:  622HA:  Temperature Summary for Air and Pavement 
622HA 620HA Temperature 

Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

24 
42 
51 
50 
50 
49 
48 

- 
3.7 
1.3 
1.2 
1.1 
1.0 
1.0 

  75 
108 
124 
122 
122 
120 
118 

- 
6.7 
2.3 
2.2 
2.0 
1.8 
1.8 

28 
42 
51 
51 
50 
49 
48 
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Figure 4.24:  622HA:  Daily average temperatures at pavement surface and at various depths. 
 

4.5.5 Permanent Surface Deformation (Rutting) 

Figure 4.25 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test, and shows the increase in rutting and deformation over time. 
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Figure 4.25:  622HA:  Profilometer cross section at various load repetitions. 
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Figure 4.26 and Figure 4.27 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the Control section (Section 620HA) are also shown for comparative purposes. 

The embedment phases for the Evotherm and Control sections were almost identical, both in terms of 

duration and rut depth, despite this section having a slightly higher air-void content than the Control 

section (6.2 percent compared to 4.9 percent) and thinner asphalt layers (see Section 5.7 for forensic 

investigation discussion). Rutting performance after the embedment phase was similar for both sections 

with a similar number of load repetitions being applied before the terminal rut depth of 12.5 mm (0.5 in.) 

was reached (42,000 repetitions compared to 46,000 on the control). This was despite the thinner asphalt 

layers and very low production and paving temperatures of the Evotherm mix, which would typically 

result in a mix with lower stiffness than a mix produced at higher temperatures, and consequently poorer 

rutting performance. Average deformation (down rut) on the Evotherm section was slightly higher than 

that recorded on the Control (7.2 mm [0.28 in.] compared to 6.4 mm [0.25 in.]) when the terminal rut was 

reached. Error bars on the average reading indicate that there was some variation along the length of the 

section, with a slightly deeper rut between Stations 8 and 13 compared to Stations 2 and 7. 

 

0

2

4

6

8

10

12

14

16

18

20

0 25 50 75 100 125 150 175 200 225 250
Load Repetitions (x 1,000)

A
ve

ra
ge

 M
ax

im
um

 T
ot

al
 R

ut
 (m

m
)

Overall Average
Average for Stations 3 to 7
Average for Stations 8 to 13
Overall Average for Control

 60kN, 50ºC 40kN, 50ºC

 

Figure 4.26:  622HA:  Average maximum rut. 
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Figure 4.27:  622HA:  Average deformation. 
 

Figure 4.28 shows contour plots of the pavement surface at the start and end of the test (200,000 

repetitions), also indicating a slightly deeper average maximum rut on one half of the section. 

 

The mix showed some load sensitivity after the load change to 60 kN, as expected. After completion of all 

trafficking, the average maximum rut depth and the average deformation were 15.8 mm (0.62 in.) and 

8.8 mm (0.35 in.), respectively. The maximum rut depth measured on the section was 17.7 mm (0.70 in.) 

recorded at Station 11. 
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Figure 4.28:  622HA:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 
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4.5.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section. Figure 4.29 shows a photograph taken of 

the surface at the end of the test. 

 

 

Figure 4.29:  622HA:  Section photograph at test completion. 
 

4.6 Section 623HA:  Cecabase 

4.6.1 Test Summary 

Loading commenced on October 25, 2010, and ended on December 8, 2010. A total of 224,000 load 

repetitions were applied and 30 datasets were collected. Load was increased to 60 kN (13,500 lb) after 

160,000 load repetitions in line with the test plan. The HVS loading history for Section 623HA is shown 

in Figure 4.30. Two carriage computer breakdowns occurred in the latter part of the test. 

 

4.6.2 Outside Air Temperatures 

Daily average outside air temperatures are summarized in Figure 4.31. Vertical error bars on each point on 

the graph show the daily temperature range. Temperatures ranged from 0°C to 28°C (32°F to 82°F) during 

the course of HVS testing, with a daily average of 13°C (55°F), an average minimum of 9°C (48°F), and 

an average maximum of 18°C (64°F). Average outside air temperatures were considerably cooler during 

testing on Section 623HA compared to those during testing on the Control (daily average of 15°C [27°F] 

cooler). 
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Figure 4.30:  623HA:  Load history. 
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Figure 4.31:  623HA:  Daily average outside air temperatures. 
 

4.6.3 Air Temperatures in the Temperature Control Unit 

During the test, air temperatures inside the temperature control chamber ranged from 35°C to 46°C (95°F 

to 115°F) with an average of 41°C (106°F) and standard deviation of 3°C (5°F). The air temperature was 
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adjusted to maintain a pavement temperature of 50°C4°C (122°F7°F). The daily average air 

temperatures recorded in the temperature control unit, calculated from the hourly temperatures recorded 

during HVS operation, are shown in Figure 4.32. Vertical error bars on each point on the graph show the 

daily temperature range. 
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Figure 4.32:  623HA:  Daily average inside air temperatures. 
 

4.6.4 Temperatures in the Asphalt Concrete Layers 

Daily averages of the surface and in-depth temperatures of the asphalt concrete layers are listed in 

Table 4.4 and shown in Figure 4.33. Pavement temperatures decreased slightly with increasing depth in 

the pavement, as expected. Average pavement temperatures at all depths on Section 623HA were similar 

to those recorded on the Control, despite lower outside temperatures. 

Table 4.4:  623HA:  Temperature Summary for Air and Pavement 
623HA 620HA Temperature 

Average (°C) Std. Dev. (°C) Average (°F) Std. Dev. (°F) Average (°C) 
Outside air 
Inside air 
Pavement surface 
-  25 mm below surface 
-  50 mm below surface 
-  90 mm below surface 
- 120 mm below surface 

13 
41 
49 
50 
50 
49 
49 

- 
3.0 
1.9 
1.4 
1.3 
1.3 
1.3 

  55 
106 
120 
122 
122 
120 
120 

- 
5.4 
3.4 
2.5 
2.3 
2.3 
2.3 

28 
42 
51 
51 
50 
49 
48 
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Figure 4.33:  623HA:  Daily average temperatures at pavement surface and at various depths. 
 

4.6.5 Permanent Surface Deformation (Rutting) 

Figure 4.34 shows the average transverse cross section measured with the laser profilometer at various 

stages of the test and shows the increase in rutting and deformation over time. 
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Figure 4.34:  623HA:  Profilometer cross section at various load repetitions. 
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Figure 4.35 and Figure 4.36 show the development of permanent deformation (average maximum rut and 

average deformation, respectively) with load repetitions as measured with the laser profilometer for the 

test section. Results for the Control section (Section 620HA) are also shown for comparative purposes. 

Although the embedment phase was of similar duration for both sections, a shallower average maximum 

rut was recorded on Section 623HA at the end of the embedment phase (5.5 mm [0.22 in.]) compared to 

the control (7.9 mm [0.31 in.]) despite this section having a slightly higher air-void content than the 

Control section (6.4 percent compared to 4.9 percent) and slightly thinner asphalt layers (see Section 5.7). 

This behavior again differs from earlier testing on dense-graded mixes with conventional binders, which 

typically showed warm mixes to have deeper rutting than the control at the end of the embedment phase. 

Rutting performance on this mix was again attributed to the additional “curing” time between construction 

and the start of HVS testing (testing on this section started four months after the start of the Control). 

After the embedment phase, the Cecabase section deformed at a considerably slower rate than the Control, 

equating to considerably more load repetitions being applied before the terminal rut depth of 12.5 mm 

(0.5 in.) was reached (200,000 repetitions compared to 46,000 on the control). The rate of deformation 

increased after the load change to 60 kN, as expected. Average deformation (down rut) on the Cecabase 

section was slightly higher than that recorded on the Control (7.5 mm [0.30 in.] compared to 6.4 mm 

[0.25 in.]). This was attributed to the higher number of load repetitions. Error bars on the average reading 

indicate that there was very little variation along the length of the section. 
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Figure 4.35:  623HA:  Average maximum rut. 
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Figure 4.36:  623HA:  Average deformation. 
 

Figure 4.37 shows contour plots of the pavement surface at the start and end of the test (224,000 

repetitions), also indicating minimal variation along the section. 

 

After completion of trafficking, the average maximum rut depth and the average deformation were 

14.0 mm (0.55 in.) and 7.5 mm (0.30 in.), respectively. The maximum rut depth measured on the section 

was 18.8 mm (0.74 in.) recorded at Station 8. 
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Figure 4.37:  623HA:  Contour plots of permanent surface deformation. 
(Note that key scales are different.) 
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4.6.6 Visual Inspection 

Apart from rutting, no other distress was recorded on the section. Appearance was similar to that of the 

other sections. Figure 4.38 shows a photograph taken of the surface at the end of the test. The hairline 

cracks and water seepage from them observed after construction and discussed in Section 2.9 did not 

appear to have influenced performance of this section in any way. 

 

 

Figure 4.38:  623HA:  Section photograph at test completion. 
 

4.7 Test Summary 

Testing on the four sections was started in the summer of 2010 and ended in the fall of the same year. A 

range of daily average temperatures was therefore experienced; however, pavement temperatures 

remained constant throughout HVS trafficking. The duration of the tests to terminal rut (12.5 mm 

[0.5 in.]) on the four sections varied from 42,000 load repetitions (Section 622HA, Evotherm) to 200,000 

load repetitions (Section 623HA, Cecabase) (Table 4.5). 

Table 4.5:  Summary of Embedment Phase and Test Duration 
Section 

Number Technology 
Embedment 
(mm [in.]) 

Repetitions to 
12.5 mm rut 

Load change to 
60 kN 

620HA 
621HA 
622HA 
623HA 

Control 
Gencor 

Evotherm 
Cecabase 

7.9 (0.31) 
6.5 (0.26) 
7.9 (0.31) 
5.5 (0.22) 

  46,000 
112,000 
  42,000 
200,000 

No 
No 
No 
Yes 

 

Rutting behavior for the four sections is compared in Figure 4.39 (average maximum rut) and Figure 4.40 

(average deformation). The duration of the embedment phases on all sections were similar; however, the 

depth of the ruts at the end of the embedment phases differed slightly between sections, with the Gencor 

(6.5 mm [0.26 in.]) and Cecabase (5.5 mm [0.22 in.]) having less embedment than the Control and 
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Evotherm sections, which had similar embedment (7.9 mm [0.31 in.]). This is opposite to the early rutting 

performance in the Phase 1 study (2) and is being investigated in a separate study. Rut rate (rutting per 

load repetition) after the embedment phase on the Control and Evotherm sections was almost identical. On 

the Gencor and Cecabase sections, rut rate was considerably slower than the Control after the embedment 

phase. The difference in performance between the three warm-mix sections is attributed in part to the 

lower production and paving temperatures of the Evotherm mix (125°C [248°F] and 120°C [237°F], 

respectively) compared to the Gencor (140°C [284°F] and 128°C [262°F) and Cecabase (130°C [266°F] 

and 128°C [262°F]) mixes, as well as to the thickness of the asphalt layers (the Evotherm section had 

thinner asphalt layers than the Control and Cecabase sections). Lower production and paving temperatures 

typically result in less oxidation of the binder, which can influence early rutting performance. Preliminary 

findings from research into binder aging in warm asphalt mixes indicates that there is fairly rapid 

oxidation (and consequent stiffening) of the binder after construction, which may explain the slower rut 

rate on the Cecabase section. Binder aging in warm-mix asphalt is being investigated in another phase of 

the Caltrans warm-mix asphalt study and will be discussed in a separate report. 
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Figure 4.39:  Comparison of average maximum rut. 
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Figure 4.40:  Comparison of average deformation. 
 

Based on the results from this phase of accelerated pavement testing on gap-graded, rubberized mixes, it 

can be concluded that the use of any of the three warm-mix asphalt technologies assessed and subsequent 

compaction of the mixes at lower temperatures will not significantly influence rutting performance of the 

mix. Performance of the warm-mix sections exceeded that of the Control, despite all the warm-mix 

sections having thinner total asphalt concrete layer thicknesses than the Control. 
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5. FORENSIC INVESTIGATION 

5.1 Introduction 

A forensic investigation was carried out after completion of all HVS testing to compare the condition of 

the asphalt concrete and underlying layers within and outside the HVS trafficked area, and to remove 

samples for laboratory testing. 

 

5.2 Forensic Investigation Procedure 

The forensic investigation included the following tasks: 

1. Demarcate test pit locations; 
2. Saw the asphalt concrete; 
3. Remove the slab and inspect surfacing/base bond; 
4. Determine the wet density of the base (nuclear density gauge); 
5. Determine the in situ strength of the base and subgrade (dynamic cone penetrometer); 
6. Remove the base and subgrade material; 
7. Sample material from the base and subgrade for moisture content determination; 
8. Measure layer thicknesses; 
9. Describe the profile; 
10. Photograph the profile; 
11. Sample additional material from the profile if required; and 
12. Reinstate the pit. 

 

The following additional information is relevant to the investigation: 

 The procedures for HVS test section forensic investigations, detailed in the document entitled 
Quality Management System for Site Establishment, Daily Operations, Instrumentation, Data 
Collection and Data Storage for APT Experiments (8) were followed. 

 The saw cuts were made at least 50 mm into the base to ensure that the slab could be removed from 
the pit without breaking. 

 Nuclear density measurements were taken between the test section centerline and the inside 
(caravan side) edge of the test section. Two readings were taken: the first with the gauge aligned 
with the direction of trafficking and the second at 90° to the first measurement (Figure 5.1). 

 DCP measurements were taken between the test section centerline and inside (caravan side) edge of 
the test section, and between the outside edge of the test section and the edge of the test pit on the 
traffic side (Figure 5.1). A third DCP measurement was taken between these two points if 
inconsistent readings were obtained. 

 Layer thicknesses were measured from a leveled reference straightedge above the pit. This allowed 
the crossfall of the section to be included in the profile. Measurements were taken across the pit at 
50-mm (2.0-in.) intervals. 
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Figure 5.1:  Test pit layout. 
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5.3 Test Pit Excavation 

One test pit was excavated on each HVS test section (between Stations 9 and 11 [see Figure 5.1]). The 

Station 9 test pit face was evaluated. Test pits were excavated to a depth approximately 200 mm (8 in.) 

into the subgrade. 

 

5.4 Base-Course Density and Moisture Content 

Table 5.1 summarizes the base-course density and moisture content measurements on each section. The 

table includes the wet and dry density and moisture content of the base in the HVS wheelpath and in the 

adjacent untrafficked area (see Figure 5.1). Measurements were taken with a nuclear gauge. Laboratory-

determined gravimetric moisture contents of the base material (average of two samples from the top and 

bottom of the excavated base) and subgrade material, as well as recalculated dry densities of the base 

(using the average gauge-determined wet density and laboratory-determined gravimetric moisture 

content), are also provided. Each gauge measurement is an average of two readings taken at each location 

in the pit (gauge perpendicular to wheelpath and parallel to wheelpath as shown in Figure 5.1). Subgrade 

densities were not measured. The following observations were made: 

 Densities increased with increasing depth, following a similar pattern to the densities measured after 
construction of the test track. 

 Densities were consistent throughout the test track and there was very little difference between the 
densities measured in the trafficked and untrafficked areas. Average nuclear gauge–determined dry 
densities of the base-course for the six depths measured ranged between 2,155 kg/m3 (134.5 lb/ft3) 
in the untrafficked area on Section 623HA and 2,255 kg/m3 (140.8 lb/ft3) on the untrafficked area of 
Section 620HA for the four test pits. The average dry density and standard deviation for the four 
test pits were 2,188 kg/m3 (136.6 lb/ft3) and 29 kg/m3 (1.8 lb/ft3), respectively, which corresponds 
with the average dry density of 2,200 kg/m3 (137.3 lb/ft3) recorded after construction, indicating 
that the base density did not increase under trafficking. The laboratory-determined maximum dry 
density was 2,252 kg/m3 (140.6 lb/ft3). The average nuclear gauge–determined wet density was 
2,347 kg/m3 (146.1 lb/ft3) with a standard deviation of 28 kg/m3 (2.4 lb/ft3). 

 Nuclear gauge–determined moisture contents of the four test pits, measured at six intervals in the 
top 300 mm of the base, ranged between 6.5 percent and 7.8 percent with an average of 7.2 percent 
(standard deviation of 0.6 percent), very similar to the measurements recorded after construction 
(7.3 percent). Moisture contents at the top of the base were generally slightly higher compared to 
those in the lower regions of the base. The laboratory-determined optimum moisture content of the 
base material was 6.0 percent. 
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Table 5.1:  Summary of Base-Course Density and Moisture Content Measurements 
Nuclear Gauge 

Wheelpath Untrafficked Laboratory 

Base Wet 
Density 

MC1 

 
Base Dry 
Density 

Base Wet 
Density 

MC 
 

Base Dry 
Density 

Base 
MC 

Recalculated 
Dry Density* 

SG2 

MC 
Section Depth 

(kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (%) (kg/m3) (lb/ft3) (%) 
  50 
100 
150 
200 
250 
300 

2,290 
2,293 
2,319 
2,322 
2,358 
2,372 

143.0 
143.1 
144.8 
144.9 
147.2 
148.1 

6.6 
6.2 
6.3 
6.6 
6.9 
6.3 

2,151 
2,156 
2,179 
2,181 
2,207 
2,231 

134.3 
134.6 
136.0 
136.1 
137.8 
139.3 

2,358 
2,393 
2,413 
2,415 
2,416 
2,438 

147.2 
149.4 
150.6 
150.8 
150.8 
152.2 

6.8 
6.5 
6.6 
6.5 
6.7 
6.7 

2,206 
2,247 
2,263 
2,264 
2,266 
2,284 

137.7 
140.3 
141.3 
141.3 
141.4 
142.6 

4.5 

2,225 
2,241 
2,265 
2,266 
2,284 
2,302 

138.9 
139.9 
141.4 
141.4 
142.6 
143.7 

16.5 620HA 
(Control) 

Avg3 

SD4 
2,326 

34 
145.2 

2.1 
6.5 
0.2 

2,184 
30 

136.3 
1.9 

2,406 
27 

150.2 
1.7 

6.6 
0.1 

2,255 
27 

140.8 
1.7 - 2,264 

28 
141.3 
1.7 - 

  50 
100 
150 
200 
250 
300 

2,199 
2,285 
2,330 
2,371 
2,387 
2,404 

137.3 
142.7 
145.4 
148.0 
149.0 
150.1 

7.1 
7.0 
7.2 
6.8 
6.8 
6.7 

2,054 
2,136 
2,174 
2,221 
2,235 
2,253 

128.2 
133.4 
135.7 
138.6 
139.5 
140.6 

2,241 
2,313 
2,340 
2,368 
2,370 
2,384 

139.9 
144.4 
146.1 
147.9 
147.9 
148.8 

7.1 
6.9 
6.9 
6.7 
6.7 
6.9 

2,092 
2,164 
2,190 
2,220 
2,221 
2,230 

130.6 
135.1 
136.7 
138.6 
138.7 
139.2 

4.1 

2,133 
2,209 
2,243 
2,277 
2,284 
2,300 

133.1 
137.9 
140.0 
142.2 
142.6 
143.6 

16.2 621HA 
(Gencor) 

Avg 
SD 

2,330 
77 

145.4 
4.8 

6.9 
0.2 

2,179 
75 

136.0 
4.7 

2,336 
53 

145.8 
3.3 

6.9 
0.2 

2,186 
52 

136.5 
3.3 - 2,241 

62 
139.9 
3.9 - 

  50 
100 
150 
200 
250 
300 

2,264 
2,329 
2,349 
2,356 
2,382 
2,395 

141.4 
145.4 
146.6 
147.1 
148.7 
149.5 

7.4 
8.0 
8.0 
8.2 
7.7 
7.5 

2,108 
2,158 
2,174 
2,177 
2,212 
2,229 

131.6 
134.7 
135.7 
135.9 
138.1 
139.2 

2,288 
2,347 
2,353 
2,380 
2,385 
2,414 

142.8 
146.5 
146.9 
148.6 
148.9 
150.7 

8.2 
7.6 
7.9 
7.5 
7.7 
8.0 

2,115 
2,181 
2,181 
2,213 
2,215 
2,235 

132.0 
136.1 
136.2 
138.2 
138.3 
139.5 

5.1 

2,166 
2,225 
2,237 
2,253 
2,268 
2,288 

135.2 
138.9 
139.6 
140.7 
141.6 
142.8 

16.2 622HA 
(Evotherm) 

Avg 
SD 

2,346 
46 

146.4 
2.9 

7.8 
0.3 

2,176 
43 

135.9 
2.7 

2,361 
43 

147.4 
2.7 

7.8 
0.3 

2,190 
43 

136.7 
2.7 - 2,239 

42 
139.8 
2.6 - 

  50 
100 
150 
200 
250 
300 

2,260 
2,330 
2,346 
2,379 
2,399 
2,417 

141.1 
145.4 
146.4 
148.5 
149.8 
150.9 

8.1 
7.7 
8.4 
7.8 
7.2 
7.5 

2,092 
2,163 
2,164 
2,207 
2,238 
2,248 

130.6 
135.1 
135.1 
137.8 
139.7 
140.3 

2,257 
2,296 
2,312 
2,326 
2,355 
2,364 

140.9 
143.4 
144.3 
145.2 
147.0 
147.6 

7.7 
7.8 
8.0 
7.5 
7.0 
7.5 

2,096 
2,130 
2,140 
2,164 
2,199 
2,200 

130.8 
133.0 
133.6 
135.1 
137.3 
137.4 

4.8 

2,155 
2,207 
2,222 
2,245 
2,268 
2,281 

134.5 
137.8 
138.7 
140.2 
141.6 
142.4 

17.5 623HA 
(Cecabase) 

Avg 
SD 

2,355 
57 

147.0 
35 

7.8 
0.4 

2,185 
58 

136.4 
3.6 

2,319 
40 

141.7 
2.5 

7.6 
0.3 

2,155 
41 

134.5 
2.6 - 2,230 

46 
139.2 
2.9 - 

* Recalculated dry density using nuclear gauge wet density and laboratory gravimetric moisture content. 
1  MC – Moisture content  2  SG = Subgrade  3  Avg = Average  4  SD = Standard Deviation 
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 Laboratory-determined gravimetric moisture contents varied between 4.1 percent (Section 621HA, 
Gencor) and 5.1 percent (Section 622HA, Evotherm), with an average of 4.6 percent and standard 
deviation of 0.4 percent. These moisture contents were on average 2.6 percent lower than those 
recorded by the nuclear gauge, and appeared more consistent with visual evaluations of the test pit 
face and more representative of typical dry back conditions in base materials. The higher moisture 
contents determined with the nuclear gauge could be associated with the presence of some excess 
moisture from the saw cutting operation during pit excavation. Recalculated dry densities, 
determined using the gauge wet density and gravimetric moisture content, were therefore slightly 
higher than the gauge-determined dry densities. 

 

5.5 Subgrade Moisture Content 

Laboratory-determined gravimetric moisture contents for the subgrade materials ranged between 

16.2 percent and 17.5 percent for the four test pits, indicating a significant difference in moisture contents 

between the base and subgrade materials. Visual observations in the test pits confirmed this difference. 

 

5.6 Dynamic Cone Penetrometer 

Dynamic cone penetrometer (DCP) measurements were recorded in each test pit, both in the wheelpath 

and in untrafficked areas. Measurements and plots are provided in Appendix B. A summary of the 

measurements is provided in Table 5.2. The results show some variation; however, this is attributed more 

to stones in the material and not to any significant differences in strength/stiffness. Variation in the 

subgrade strengths was attributed to remnants of lime treatments during construction of the UCPRC 

facility. The strength of the material was considered relatively low for base-course standard, but 

appropriate for accelerated pavement tests. 

Table 5.2:  Summary of Dynamic Cone Penetrometer Measurements 

Blows to 800 mm mm/Blow Estimated Modulus 
(MPa [ksi]) Section 

Wheelpath Untrafficked 
Layer 

Wheelpath Untrafficked Wheelpath Untrafficked 
620HA 
621HA 
622HA 
623HA 

121 
224 
133 
121 

122 
148 
130 
106 

Base 

  5 
  4 
  5 
  6 

  5 
  4 
  5 
  4 

213 (31) 
297 (43) 
227 (33) 
306 (44) 

243 (35) 
259 (38) 
222 (32) 
245 (39) 

620HA 
621HA 
622HA 
623HA 

 Subgrade 

14 
  7 
14 
21 

20 
16 
15 
16 

  71 (10) 
151 (22) 
  66 (10) 
45 (7) 

  48 (7) 
  60 (9) 
  63 (9) 
  60 (9) 

 

5.7 Test Pit Profiles and Observations 

Test pit profile illustrations are provided in Appendix B. Average measurements for each profile at 

Station 9 are listed in Table 5.3. The average layer thicknesses include the wheelpath depression and 
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adjacent material displacement (bulge). As expected, minimum thickness measurements were always 

recorded in one of the wheelpaths, while maximum thickness measurements were always recorded in one 

of the adjacent areas of displacement. Design thicknesses for the top and bottom lifts of asphalt and the 

base were 60 mm, 60 mm, and 400 mm, respectively (0.2 ft., 0.2 ft., and 1.3 ft.). 

Table 5.3:  Average Layer Thicknesses from Test Pit Profiles (Station 9) 
Average Std. Deviation Minimum Maximum Section Layer 

(mm) (ft.) (mm) (ft.) (mm) (ft.) (mm) (ft.) 

620HA 

AC – top 
AC – bottom 

AC – total 
Base 

  69 
  80 
149 
439 

0.23 
0.26 
0.49 
1.44 

2 
5 
- 
6 

0.01 
0.02 

- 
0.02 

  64 
  66 
137 
427 

0.21 
0.22 
0.43 
1.40 

  74 
  89 
160 
451 

0.24 
0.29 
0.53 
1.48 

621HA 

AC – top 
AC – bottom 

AC – total 
Base 

  65 
  65 
130 
459 

0.22 
0.22 
0.43 
1.51 

3 
3 
- 
6 

0.01 
0.01 

- 
0.02 

  57 
  58 
124 
448 

0.18 
0.19 
0.41 
1.47 

  70 
  70 
136 
472 

0.23 
0.23 
0.45 
1.55 

622HA 

AC – top 
AC – bottom 

AC – total 
Base 

  66 
  71 
138 
485 

0.22 
0.23 
0.45 
1.59 

3 
5 
- 
7 

0.01 
0.02 

- 
0.03 

  61 
  62 
128 
470 

0.20 
0.20 
0.42 
1.54 

 76 
  78 
146 
495 

0.25 
0.26 
0.48 
1.63 

623HA 

AC – top 
AC – bottom 

AC – total 
Base 

  64 
  79 
143 
437 

0.21 
0.26 
0.47 
1.43 

4 
5 
- 
4 

0.02 
0.02 

- 
0.02 

  55 
  62 
135 
429 

0.18 
0.20 
0.44 
1.41 

  78 
  89 
153 
445 

0.26 
0.29 
0.50 
1.46 

 

The measurements from each test pit show that layer thickness consistency on each test section was fairly 

good based on the low standard deviations recorded. The average base thickness varied between 437 mm 

(1.43 ft.) on Section 623HA and 485 mm (1.6 ft.) on Section 622HA (slightly higher than the design), 

while the combined asphalt concrete thickness varied between 130 mm (0.43 ft.) on Section 621HA and 

149 mm (0.49 ft.) on Section 620HA (also thicker than the design). Average asphalt concrete thicknesses 

measured in the test pits were consistent with the measurements from cores discussed in Section 2.7.10. A 

discussion of the observations from each test pit is provided in the following sections. 

 

5.7.1 Section 620HA:  Control 

Observations from the Section 620HA test pit (Figure 5.2) include: 

 The average thickness of the bottom lift of asphalt concrete was considerably thicker (80 mm 
[0.26 ft.]) than the design thickness (60 mm [0.2 ft.]), while the average top lift thickness, which 
includes rut and bulge measurements, was slightly thicker (69 mm [0.23 ft.]) than the design. The 
average combined thickness was considerably thicker (149 mm [0.49 ft.]) than the design (120 mm 
[0.4 ft.]). 

 Rutting was mostly restricted to the upper region of the top lift of asphalt, although some evidence 
of rutting was noted in the bottom lift (about 3 mm [0.12 in.]) and at the top of the base 
(Figure 5.2b). No rutting was measured/observed in the subgrade. Some displacement was recorded 
on either side of the trafficked area in both lifts of asphalt and at the top of the base. 
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 The two asphalt concrete layers were well bonded to each other (Figure 5.2c) and well bonded to 
the aggregate base. The precise location of the bond between the two asphalt lifts was clear. The 
prime coat appeared to have penetrated between 10 mm and 15 mm (0.4 in. and 0.6 in.) into the 
base (Figure 5.2d). 

 Apart from rutting, no other distresses were noted in the asphalt layers other than some signs of 
segregation and some visible voids, attributed to the cold placement temperatures. 

 Base thickness showed very little variation across the profile. The material was well graded and 
aggregates were mostly rounded (little evidence of crushing) with some flakiness. No oversize 
material was observed, and the properties appeared to be consistent (Figure 5.2e). Material 
consistency was rated as very hard throughout the layer. No organic matter was observed. 

 Moisture content in the base was rated as moist, with moisture content appearing to increase near 
the subgrade. There was no indication of higher moisture content at the interface between the base 
and asphalt concrete layers. 

 The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted. 

 The subgrade was moist, silty-clay material. Consistency was rated as soft and some shrinkage and 
slickenslides were observed. Some evidence (hydrochloric acid reaction) of the lime treatment 
during the original site preparation for construction of the UCPRC facility in 2008 was noted 
(Figure 5.2f). No organic matter was observed. 

 

  
(a)  General view of asphalt layers (b)  Rutting in top and bottom lifts 

  
(c)  Bond between lifts. Note voids in top lift. (d)  Penetration of prime into base layer 

Figure 5.2:  620HA:  Test pit photographs. 
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(e)  Consistent base material and clear interface with 

subgrade 
(f)  Hydrochloric acid reaction on subgrade material 

Figure 5.2:  620HA:  Test pit photographs (continued). 

 

5.7.2 Section 621HA:  Gencor 

Observations from the Section 621HA test pit (Figure 5.3) include: 

 The average thicknesses of both lifts of asphalt concrete were thicker (65 mm [0.22 ft.]) than the 
design thickness. The average combined thickness was also marginally thicker (130 mm [0.43 ft.]) 
than the design, but almost 20 mm (0.01 ft.) thinner than the Control. 

 Rutting was mostly restricted to the upper region of the top lift of asphalt, although some evidence 
of rutting was noted in the bottom lift (about 3 mm to 5 mm [0.12 to 0.2 in.]), top of the base, and 
top of the subgrade. Some displacement was recorded on either side of the trafficked area in both 
lifts of asphalt and at the top of the base. 

 The two asphalt concrete layers were well bonded to each other and well bonded to the aggregate 
base. The precise location of the bond between the two asphalt lifts was clear. The prime coat 
appeared to have penetrated in a similar way to that observed on the Control. 

 Apart from rutting, no other distresses were noted in the asphalt layers, other than some bleeding in 
the wheelpaths and some visible voids. 

 

 

Figure 5.3:  621HA:  Test pit photograph. 
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 Base thickness showed very little variation across the profile. The material was consistent with the 
observations on the Control. 

 Moisture content in the base was rated as moist, with moisture content appearing to increase near 
the subgrade. There was no indication of higher moisture content at the interface between the base 
and asphalt concrete layers. 

 The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted. 

 Observations of the subgrade were consistent with those of the Control, but the material appeared to 
have a slightly higher plasticity. 

 

5.7.3 Section 622HA:  Evotherm 

Observations from the Section 622HA test pit (Figure 5.4) include: 

 The average thicknesses of both lifts of asphalt concrete were thicker (66 mm [0.22 ft.] and 71 mm 
[0.23 ft.], respectively) than the design thickness. The average combined thickness was also 
marginally thicker (138 mm [0.45 ft.]) than the design, but about 11 mm thinner than the Control. 

 Rutting was mostly restricted to the upper region of the top lift of asphalt, although some evidence 
of rutting was noted in the bottom lift (about 3 mm to 5 mm [0.12 to 0.2 in.]). No rutting was 
evident in the base or subgrade layers (Figure 5.4a). Some displacement was recorded on either side 
of the trafficked area in both lifts of asphalt. 

 The two asphalt concrete layers were well bonded to each other and well bonded to the aggregate 
base. The precise location of the bond between the two asphalt lifts was clear. The prime coat 
appeared to have penetrated in a similar way to that observed on the Control. 

 Apart from rutting, no other distresses were noted in the asphalt layers. 
 Base thickness showed very little variation across the profile. The material was consistent with the 

observations on the Control. 
 Moisture content in the base was rated as moist, with moisture content appearing to increase near 

the subgrade. There was no indication of higher moisture content at the interface between the base 
and asphalt concrete layers. 

 

  
(a)  General view of test pit face (b)  Stone punching into subgrade 

Figure 5.4:  622HA:  Test pit photographs. 



 

 
82 UCPRC-RR-2011-02 

 The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted (Figure 5.4b). 

 Observations of the subgrade were consistent with those of the Control. 
 

5.7.4 Section 623HA:  Cecabase 

Observations from the Section 623HA test pit (Figure 5.5) include: 

 The average thicknesses of both lifts of asphalt concrete were thicker (64 mm [0.21 ft.] and 79 mm 
[0.26 ft.], respectively) than the design thickness. The average combined thickness was 
considerably thicker (143 mm [0.47 ft.]) than the design but still less than the thickness of the 
asphalt layers on the Control (149 mm [0.49 ft.]). 

 Rutting was mostly restricted to the upper region of the top lift of asphalt, although some evidence 
of rutting was noted in the bottom lift (about 3 mm [0.12 in.]), top of the base, and top of the 
subgrade (Figure 5.5a). Some displacement was recorded on either side of the trafficked area in 
both lifts of asphalt and at the top of the base. 

 The two asphalt concrete layers were well bonded to each other, and to the aggregate base. The 
precise location of the bond between the two asphalt lifts was clear, but some evidence of moisture 
in the bond was observed (Figure 5.5b). The prime coat appeared to have penetrated in a similar 
way to that observed on the Control. 

 Apart from rutting, no other distresses were noted in the asphalt layers. 
 Base thickness showed very little variation across the profile. The material was consistent with the 

observations on the Control. 
 Moisture content in the base was rated as moist, with moisture content appearing to increase near 

the subgrade. There was some indication of higher moisture content at the interface between the 
base and asphalt concrete layers (Figure 5.5a). 

 The layer definition between the base and subgrade was clear. Some punching of the base into the 
subgrade was noted. 

 Observations of the subgrade were consistent with those of the Control. 
 

  
(a)  General view of test pit face (b)  Moisture in bond between asphalt layers 

Figure 5.5:  623HA:  Test pit photographs. 
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5.8 Forensic Investigation Summary 

A forensic investigation of all test sections indicated that rutting was mostly confined to the upper lift of 

the asphalt concrete, with limited rutting in the bottom lift, base, and top of the subgrade. There was some 

variation in asphalt layer lift thicknesses between the four sections. Materials were consistent throughout 

the four sections. No evidence of moisture damage was noted. There was no visible difference between 

the Control and warm-mix asphalt sections. 
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6. PHASE 3a LABORATORY TEST DATA SUMMARY 

6.1 Experiment Design 

Phase 3a laboratory testing included rutting performance (shear), fatigue cracking, and moisture 

sensitivity tests. Tests on these mix properties were carried out on beams and cores cut from the test track 

after construction (see Section 2.8). Typical experimental designs used in previous studies were adopted 

for this warm-mix asphalt study to facilitate comparison of results. 

 

6.1.1 Shear Testing for Rutting Performance 

Test Method 

The AASHTO T 320 Permanent Shear Strain and Stiffness Test was used for shear testing in this study. In 

the standard test methodology, cylindrical test specimens 150 mm (6.0 in.) in diameter and 50 mm 

(2.0 in.) thick are subjected to repeated loading in shear using a 0.1-second haversine waveform followed 

by a 0.6-second rest period. Three different shear stresses are applied while the permanent (unrecoverable) 

and recoverable shear strains are measured. The permanent shear strain versus applied repetitions is 

normally recorded up to a value of five percent although 5,000 repetitions are called for in the AASHTO 

procedure. A constant temperature is maintained during the test (termed the critical temperature), 

representative of the high temperature causing rutting in the local environment. In this study, specimens 

were cored from the test track and then trimmed to size. 

 

Number of Tests 

A total of 18 shear tests were carried out on each mix (total of 72 tests for the four mixes) as follows: 

 Two temperatures (45°C and 55°C [113°F and 131°F]) 
 Three stresses (70 kPa, 100 kPa, and 130 kPa [10.2, 14.5, and 18.9 psi]) 
 Three replicates 

 

6.1.2 Flexural Beam Testing for Fatigue Performance 

Test Method 

The AASHTO T-321 Flexural Controlled-Deformation Fatigue Test method was followed. In this test, 

three replicate beam test specimens, 50 mm (2.0 in.) thick by 63 mm (2.5 in.) wide by 380 mm (15 in.) 

long, which were sawn from the test track, were subjected to four-point bending using a haversine 

waveform at a loading frequency of 10 Hz. Testing was performed in both dry and wet condition at two 

different strain levels at one temperature. Flexural Controlled-Deformation Frequency Sweep Tests were 

used to establish the relationship between complex modulus and load frequency. The same sinusoidal 

waveform was used in a controlled deformation mode and at frequencies of 15, 10, 5, 2, 1, 0.5, 0.2, 0.1, 
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0.05, 0.02, and 0.01 Hz. The upper limit of 15 Hz is a constraint imposed by the capabilities of the test 

machine. To ensure that the specimen was tested in a nondestructive manner, the frequency sweep test 

was conducted at a small strain amplitude level, proceeding from the highest frequency to the lowest in 

the sequence noted above. 

 

The wet specimens used in the fatigue and frequency sweep tests were conditioned following the beam-

soaking procedure described in Appendix C. The beam was first vacuum-saturated to ensure a saturation 

level greater than 70 percent, and then placed in a water bath at 60°C (140°F) for 24 hours, followed by a 

second water bath at 20°C (68°F) for two hours. The beams were then wrapped with ParafilmTM and tested 

within 24 hours after soaking. 

 

Number of Tests 

A total of 12 beam fatigue tests and 12 flexural fatigue frequency sweep tests were carried out on each 

mix (total of 96 tests for the four mixes) as follows: 

 Flexural fatigue test: 
+ Two conditions (wet and dry) 
+ One temperature (20°C [68°F]) 
+ Two strains (200 microstrain and 400 microstrain) 
+ Three replicates 

 Frequency sweep test: 
+ Two conditions (wet and dry) 
+ Three temperatures (10°C, 20°C, and 30°C [50°F, 68°F, and 86°F]) 
+ One strain (100 microstrain) 
+ Two replicates 

 

6.1.3 Moisture Sensitivity Testing 

Test Methods 

Two additional moisture sensitivity tests were conducted, namely the Hamburg Wheel-Track test and the 

Tensile Strength Retained (TSR) test. 

 The AASHTO T-324 test method was followed for Hamburg Wheel-Track testing on 152 mm 
(6.0 in.) cores removed from the test track. All testing was carried out at 50°C (122°F). 

 The Caltrans CT 371 test method was followed for the Tensile Strength Retained Test on 100 mm 
cores removed from the test track and trimmed to a thickness of 63 mm (2.5 in.). This test method is 
similar to the AASHTO T-283 test, however, it has some modifications specific for California 
conditions. 

 

Number of Tests 

Four replicates of the Hamburg Wheel-Track test and four replicates of the Tensile Strength Retained test 

were carried out for each mix (16 tests per method). 
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6.2 Test Results 

6.2.1 Rutting Performance Tests 

Air-Void Content 

Shear specimens were cored from the test track and trimmed to size. Air-void contents were measured 

using the CoreLok method and results are listed in Table D.1 through Table D.4 in Appendix D. Table 6.1 

summarizes the air-void distribution categorized by mix type, test temperature, and test shear stress level. 

Figure 6.1 presents the summary boxplots of air-void content of all the specimens tested according to 

additive type. The differences in air-void content distributions between the mixes with various additives 

are clearly apparent. The mean difference for the highest mean air-void content (Evotherm) and the 

smallest mean air-void content (Control) could be as high as 2.0 percent. The Gencor specimens had the 

largest range in air-void content. 

Table 6.1:  Summary of Air-Void Contents of Shear Test Specimens 
Air-Void Content (%) Temperature Stress Level 

Control Gencor Evotherm Cecabase 
°C °F (kPa) Mean1 SD2 Mean SD Mean SD Mean SD 
45 113 70 

100 
130 

4.9 
4.8 
4.6 

0.5 
0.6 
0.3 

6.1 
6.4 
8.6 

1.9 
1.5 
0.9 

6.0 
6.1 
6.1 

0.5 
0.3 
0.3 

5.7 
5.8 
5.5 

0.5 
0.2 
0.7 

55 131 70 
100 
130 

4.7 
5.2 
4.8 

0.7 
0.3 
0.4 

5.0 
6.2 
4.9 

0.8 
2.4 
0.2 

5.8 
5.7 
5.7 

0.4 
0.2 
0.2 

5.2 
5.9 
5.2 

0.7 
0.9 
0.6 

Overall 4.8 0.4 6.2 1.8 5.9 0.3 5.5 0.6 
1  Mean of three replicates  2  SD:  Standard deviation 
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Figure 6.1:  Air-void contents of shear specimens. 
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Resilient Shear Modulus (G*) 

The resilient shear modulus results for the four mixes are summarized in Figure 6.2 and Figure 6.3. The 

following observations were made: 

 The resilient shear modulus was influenced by temperature, with the modulus increasing with 
decreasing temperature. Resilient shear modulus was not influenced by stress. 

 The variation of resilient shear moduli at 45°C was higher than at 55°C except for the Evotherm 
mix, which showed considerable variability in the results for stress levels of 70 kPa and 100 kPa. A 
check of the test data for the individual specimens indicated suspect data for one specimen 
(probably due to aggregate size), and if this is removed from the dataset, the results are consistent 
with the other mixes. 

 

0
50

10
0

15
0

20
0

25
0

30
0

0
50

10
0

15
0

20
0

25
0

30
0

s70

s100s130

s70 s100s130

s70
s100s130

s70 s100
s130

s70 s100
s130

s70
s100

s130

s70
s100

s130

s70 s100
s130

45C45C
45C

45C

55C
55C

55C

55C

Control Gencor Evotherm Cecabase

G
 (M

Pa
)

0
50

10
0

15
0

20
0

25
0

30
0

0
50

10
0

15
0

20
0

25
0

30
0

s70

s100s130

s70 s100s130

s70
s100s130

s70 s100
s130

s70 s100
s130

s70
s100

s130

s70
s100

s130

s70 s100
s130

45C45C
45C

45C

55C
55C

55C

55C

0
50

10
0

15
0

20
0

25
0

30
0

0
50

10
0

15
0

20
0

25
0

30
0

0
50

10
0

15
0

20
0

25
0

30
0

0
50

10
0

15
0

20
0

25
0

30
0

0
50

10
0

15
0

20
0

25
0

30
0

0
50

10
0

15
0

20
0

25
0

30
0

s70

s100s130

s70 s100s130

s70
s100s130

s70 s100
s130

s70 s100
s130

s70
s100

s130

s70
s100

s130

s70 s100
s130

45C45C45C45C
45C45C

45C45C

55C55C
55C55C

55C55C

55C55C

Control Gencor Evotherm CecabaseControl Gencor Evotherm Cecabase

G
 (M

Pa
)

 

Figure 6.2:  Summary boxplots of resilient shear modulus. 
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Figure 6.3:  Average resilient shear modulus at 45°C and 55°C at 100 kPa stress level. 
(Average mix production temperature, binder content, and air-void content shown.) 
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 Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 
significant difference (confidence level of 0.1) in performance between the Control and the three 
warm mixes after variation in mix production temperature, binder content, specimen air-void 
content, actual test stress level, and actual test temperature were taken into consideration. This 
indicates that the use of the warm-mix technologies and lower production and compaction 
temperatures did not significantly influence the performance of the mixes in this test. 

 

Cycles to Five Percent Permanent Shear Strain 

The number of cycles to five percent permanent shear strain provides an indication of the rut-resistance of 

an asphalt mix, with higher numbers of cycles implying better rut-resistance. Figure 6.4 and Figure 6.5 

summarize the shear test results in terms of the natural logarithm of this parameter. The following 

observations were made: 

 Variation between results was in line with typical result ranges for this test. 
 As expected, the rut-resistance capacity decreased with increasing temperature and stress level.  
 Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 

significant difference (confidence level of 0.1) in performance in this test between the Control and 
the three warm-mixes after variation in mix production temperature, binder content, specimen air-
void content, actual test stress level, and actual test temperature were taken into consideration. This 
indicates that the use of the warm-mix technologies and lower production and compaction 
temperatures did not significantly influence the performance of the mixes in this test. 
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Figure 6.4:  Summary boxplots of cycles to five percent permanent shear strain. 
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Figure 6.5:  Average cycles to 5% permanent shear strain at 45°C and 55°C at 100 kPa stress level. 
(Average mix production temperature, binder content, and air-void content shown.) 

 

Permanent Shear Strain at 5,000 Cycles 

The measurement of permanent shear strain (PSS) accumulated after 5,000 cycles provides an alternative 

indication of the rut-resistance capacity of an asphalt mix. The smaller the permanent shear strain the 

better the mixture’s rut-resistance capacity. Figure 6.6 and Figure 6.7 summarize the rutting performance 

of the four mixes in terms of the natural logarithm of this parameter (i.e., increasingly negative values 

represent smaller cumulative permanent shear strain). The following observations were made: 

 Variation between results was in line with typical result ranges for this test. 
 As expected, the effect of shear stress level was more significant at higher temperatures, and the 

higher the temperature and stress level the larger the cumulative permanent shear strain. 
 Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 

significant difference (confidence level of 0.1) in performance between the Control and the three 
warm mixes after variation in mix production temperature, binder content, specimen air-void 
content, actual test stress level, and actual test temperature were taken into consideration. This 
indicates that the use of the warm-mix technologies and lower production and compaction 
temperatures did not significantly influence the performance of the mixes in this test. 
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Figure 6.6:  Summary boxplots of cumulative permanent shear strain at 5,000 cycles. 
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Figure 6.7:  Average PSS after 5,000 cycles at 45°C and 55°C at 100 kPa stress level. 
(Average mix production temperature, binder content, and air-void content shown.) 

 

6.2.2 Beam Fatigue Tests 

Air-Void Content 

Fatigue beams were saw-cut from the top lift of the slabs sampled from the test track. Air-void contents 

were measured using the CoreLok method and results are listed in Table D.5 in Appendix D. Table 6.2 

and Table 6.3 summarize the air-void distribution categorized by mix type and test tensile strain level for 

the beam fatigue and frequency sweep specimens, respectively. Figure 6.8 shows summary boxplots of 

air-void content for the wet and dry beam fatigue specimens. 
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Table 6.2:  Summary of Air-Void Contents of Beam Fatigue Specimens 
Air-Void Content (%) Strain 

 
Temp. 

Control Gencor Evotherm Cecabase 
Condition 

(µstrain) °C °F Mean1 SD2 Mean SD Mean SD Mean SD 
200 
400 20 68 4.5 

4.6 
0.7 
1.0 

6.7 
7.0 

0.2 
0.5 

6.1 
6.0 

0.2 
0.3 

7.1 
7.1 

0.7 
0.8 Dry 

Overall 4.6 0.8 6.9 0.4 6.1 0.3 7.1 0.7 
200 
400 20 68 4.3 

4.6 
0.8 
0.5 

6.6 
6.9 

0.6 
0.6 

6.2 
6.5 

0.8 
0.5 

6.5 
6.6 

0.4 
0.5 Wet 

Overall 4.4 0.7 6.7 0.6 6.3 0.7 6.6 0.5 
1  Mean of two replicates  2  SD:  Standard deviation 

 

Table 6.3:  Summary of Air-Void Contents of Flexural Frequency Sweep Specimens 
Air-Void Content (%) Temp. 

Control Gencor Evotherm Cecabase 
Condition 

°C °F Mean1 SD2 Mean SD Mean SD Mean SD 
10 
20 
30 

50 
68 
86 

4.4 
4.1 
4.0 

0.9 
0.4 
0.5 

6.3 
6.8 
6.3 

1.1 
0.1 
1.5 

6.2 
6.1 
6.4 

0.6 
0.0 
0.4 

7.3 
6.9 
6.9 

0.1 
0.4 
0.1 Dry 

Overall 4.1 0.6 6.4 0.9 6.2 0.3 7.0 0.2 
10 
20 
30 

50 
68 
86 

4.7 
3.0 
4.3 

1.2 
1.3 
0.8 

6.8 
7.4 
7.1 

1.3 
0.1 
0.1 

5.8 
6.2 
6.0 

0.3 
0.1 
0.1 

6.7 
6.2 
6.9 

0.3 
0.2 
0.6 Wet 

Overall 4.0 1.1 7.1 0.5 6.0 0.2 6.6 0.4 
1  Mean of three replicates  2  SD:  Standard deviation 
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Figure 6.8:  Air-void contents of beam fatigue specimens (dry and wet). 
 
For the beam fatigue specimens, there was no significant difference in air-void content between the 

specimens used for testing at the different strain levels and moisture condition within each mix, apart from 

the 0.5 percent difference between the specimens for the Cecabase dry and wet testing. There was, 

however, a notable difference in air-void contents between the Control and the warm mixes as a group, 
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and between the different warm-mixes, with the Evotherm specimens having a lower average air-void 

content than the Gencor and Cecabase specimens. For the frequency sweep specimens, where only two 

specimens for each variable were tested, the air-void contents show a little more variability, but show 

similar trends to the beam fatigue specimens. Suggested reasons for the difference in air-void content are 

discussed in Section 0. The differences in air-void content were factored into the test result analyses, 

discussed below. 

 
Initial Stiffness 

Figure 6.9 illustrates the initial stiffness comparison at various strain levels, temperatures, and 

conditioning for the different mix types. Figure 6.10 shows the average results in relation to production 

temperature, binder content, and average air-void content. The following observations were made: 

 Variation between results was in line with typical result ranges for this test. 
 Initial stiffness was generally strain-independent for both the dry and wet tests. 
 In the dry tests, there was no significant difference between the four mixes, indicating that the use 

of the warm-mix technologies and lower production and compaction temperatures did not 
significantly influence the performance of the mixes in this test. 

 A reduction of initial stiffness due to soaking was apparent for each mix type, indicating a potential 
loss of structural capacity due to moisture damage. The reduction in initial stiffness after soaking 
was most prominent for the Gencor mix. 
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Figure 6.9:  Summary boxplots of initial stiffness. 
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Figure 6.10:  Plot of average initial stiffness. 
(Average mix production temperature, binder content, and air-void content shown.) 

 

Initial Phase Angle 

The initial phase angle can be used as an index of mix viscosity properties, with higher phase angles 

corresponding to more viscous and less elastic properties. Figure 6.11 illustrates the side-by-side phase 

angle comparison of dry and wet tests for the four mixes. Figure 6.12 shows the average results in relation 

to production temperature, binder content, and average air-void content. The following observations were 

made: 

 The initial phase angle appeared to be strain-independent. 
 There was less variation in results of the soaked tests between the three replicates in each mix 

compared to the dry tests. Soaking appeared to increase the phase angle slightly. 
 The initial phase angle was highly negative-correlated with the initial stiffness. 
 Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 

significant difference (confidence level of 0.1) in performance between the Control and the three 
warm mixes after variation in mix production temperature, binder content, specimen air-void 
content, actual test strain level, and actual test temperature were taken into consideration. This 
indicates that the use of the warm-mix technologies and lower production and compaction 
temperatures did not significantly influence the performance of the mixes in this test. 
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Figure 6.11:  Summary boxplots of initial phase angle. 
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Figure 6.12:  Plot of average initial phase angle. 
(Average mix production temperature, binder content, and air-void content shown.) 

 
Fatigue Life at 50 Percent Stiffness Reduction 

Mix stiffness decreases with increasing test-load repetitions. Conventional fatigue life is defined as the 
number of load repetitions when 50 percent stiffness reduction has been reached. A high fatigue life 
implies a slow fatigue damage rate and consequently higher fatigue-resistance. The side-by-side fatigue 
life comparison of dry and wet tests is plotted in terms of the natural logarithm of this parameter in 
Figure 6.13. Figure 6.14 shows the average results in relation to production temperature, binder content, 
and average air-void content. The following observations were made: 

 Fatigue life was strain-dependent as expected, with lower strains resulting in higher fatigue life. 
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 Soaking generally resulted in a lower fatigue life compared to the unsoaked specimens. 
 Statistical analyses (t-test and Kolmogorov-Smirnov test) indicated that there was no statistically 

significant difference (confidence level of 0.1) in terms of fatigue life at 50 percent stiffness 
reduction performance between the Control and the three warm mixes after variation in mix 
production temperature, binder content, specimen air-void content, actual test strain level, and 
actual test temperature were taken into consideration. This indicates that the use of the warm-mix 
technologies and lower production and compaction temperatures did not significantly influence the 
performance of the mixes in this test. 
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Figure 6.13:  Summary boxplots of fatigue life. 
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Figure 6.14:  Plot of average fatigue life. 
(Average mix production temperature, binder content, and air-void content shown.) 
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Flexural Frequency Sweep 

The average stiffness values of the two replicates tested at the three temperatures were used to develop the 

flexural complex modulus (E*) master curve. This is considered a useful tool for characterizing the effects 

of loading frequency (or vehicle speed) and temperature on the initial stiffness of an asphalt mix (i.e., 

before any fatigue damage has occurred). The shifted master curve with minimized residual-sum-of-

squares derived using a generic algorithm approach can be appropriately fitted with the following 

modified Gamma function (Equation 6.1): 
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where: E* = flexural complex modulus (MPa); 
 aTfreqx lnln   = is the loading frequency in Hz and lnaT can be obtained from the 

temperature-shifting relationship (Equation 6.2); 
 A, B, C, D, and n are the experimentally-determined parameters.  
 















 


B

TrefT
AaT exp1ln  (6.2) 

where: lnaT = is a horizontal shift to correct the temperature effect with the same unit as lnfreq, 
 T = is the temperature in °C,  
 Tref = is the reference temperature, in this case, Tref = 20°C 
 A and B are the experimentally determined parameters.  
 

The experimentally determined parameters of the modified Gamma function for each mix type are listed 

in Table 6.4, together with the parameters in the temperature-shifting relationship.  

 
Figure 6.15 and Figure 6.16 show the shifted master curves with Gamma-fitted lines and the temperature-

shifting relationships, respectively, for the dry frequency sweep tests. The temperature-shifting 

relationships were obtained during the construction of the complex modulus master curve and can be used 

to correct the temperature effect on initial stiffness. Note that a positive temperature shift (lnaT) value 

needs to be applied when the temperature is lower than the reference temperature, while a negative 

temperature shift value needs to be used when the temperature is higher than the reference temperature. 

The following observations were made from the dry frequency sweep test results: 

 There was no apparent difference between the complex modulus master curves of the Control and 
Evotherm mixes. The curves for the Gencor and Cecabase mixes were below that of the Control. 
This was attributed to the higher air-void contents of the tested beams from these mixes. 

 The temperature-shifting relationships indicate that there was very little difference in temperature 
sensitivity among the four mixes. Higher temperature-sensitivity implies that a per unit change of 
temperature will cause a larger change of stiffness (i.e., larger change of lnaT). 
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Table 6.4:  Summary of Master Curves and Time-Temperature Relationships 
Master Curve Time-Temperature 

Relationship 
Mix Conditioning 

Number A B C D A B 
Control 
Gencor 

Evotherm 
Cecabase 

Dry 

3 
3 
3 
3 

28929.32 
18036.35 
23419.05 
12045.32 

  6.26361 
  4.81871 
  5.47160 
  3.36214 

-7.48909 
-6.82995 
-7.27919 
-5.85569 

186.1060 
273.4475 
237.0034 
442.2764 

   28.6493 
   88.3407 
-156.8730 
  -18.7266 

  -93.239 
-302.942 
  522.782 
    63.296 

Control 
Gencor 

Evotherm 
Cecabase 

Wet 

3 
3 
3 
3 

25412.95 
26716.69 
78224.31 
42008.68 

  6.07384 
  7.13615 
12.77743 
  8.51963 

-7.70255 
-7.71639 
-9.25152 
-7.63484 

190.4917 
175.0177 
  97.1018 
187.8012 

    5.8064 
  22.0331 
  29.2673 
-18.7079 

-19.5429 
-67.0559 
-84.6037 
 54.9038 

Notes: 

1. The reference temperature is 20°C. 
2. The wet test specimens were soaked at 60°C. 
3. Master curve Gamma-fitted equations: 

If n = 3,    
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4. Time-temperature relationship: 
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Figure 6.15:  Complex modulus (E*) master curves (dry). 
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Figure 6.16:  Temperature-shifting relationship (dry). 
 

Figure 6.17 and Figure 6.18 respectively show the shifted master curves with Gamma-fitted lines and the 

temperature-shifting relationships for the wet frequency sweep tests. The comparison of dry and wet 

complex modulus master curves is shown in Figure 6.19 for each mix type. The following observations 

were made with regard to the wet frequency sweep test results: 

 The complex modulus curve of the Control was higher than those of the warm mixes. The 
Evotherm and Cecabase mixes had similar performance, while the Gencor mix had a lower complex 
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modulus. This was attributed to the higher air-void contents of the tested beams from the warm 
mixes. 

 There were no significant temperature-sensitivity differences between the four mixes at higher 
temperatures (i.e., higher than 20°C). At lower temperatures (i.e., lower than 20°C), there was a 
small difference in temperature-sensitivity between the Control and the warm mixes. 

 Some loss of stiffness attributed to moisture damage was apparent in all four mixes. 
 

0

2,000

4,000

6,000

8,000

10,000

12,000

-10 -8 -6 -4 -2 0 2 4 6 8
Ln(frequency [Hz])

E*
 (M

Pa
)

G1 Control G2 Gencor

G3 Evotherm G4 Cecabase

 

Figure 6.17:  Complex modulus (E*) master curves (wet). 
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Figure 6.18:  Temperature-shifting relationship (wet). 
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Figure 6.19:  Comparison of dry and wet complex modulus master curves. 
(Includes percent reduction in stiffness at each frequency from dry to wet master curve.) 
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6.2.3 Moisture Sensitivity:  Hamburg Wheel-Track Test 

Air-Void Content 

The air-void content of each core was determined using the CoreLok method. The air-void contents 

ranged between 4.8 and 7.9 percent, with the Control mix specimens having slightly lower air-void 

contents than those of the other three mixes (Table 6.5). 

Table 6.5:  Summary of Air-Void Contents of Hamburg Test Specimens 
Air-Void Content (%) 

Control Gencor Evotherm Cecabase 
Mean1 Std Dev2 Mean Std Dev Mean Std Dev Mean Std Dev 

6.3 0.3 6.5 0.7 7.0 0.4 6.9 0.6 
1  Mean of four replicates  2  Std Dev:  Standard deviation 

 

Testing 

The testing sequence of the specimens was randomized to avoid any potential block effect. Rut depth was 

recorded at 11 equally spaced points along the wheelpath on each specimen. The average of the middle 

seven points was then used in the analysis. This method ensures that localized distresses are smoothed and 

variance in the data is minimized. It should be noted that some state departments of transportation only 

measure the point of maximum final rut depth, which usually results in a larger variance in the test results. 

 

Average maximum rut depths after 10,000 and 20,000 passes and the creep and stripping slopes are 

summarized in Table 6.6. There was no apparent stripping inflection point. 

Table 6.6:  Summary of Results of Hamburg Wheel-Track Tests 
Rut depth (mm) 

Control Gencor Evotherm Cecabase 
Mean1 SD2 Mean SD Mean SD Mean SD 

Test 
Set 

10,000 passes  
1 
2 

  7.3 
  7.0 

0.1 
0.7 

  8.7 
13.5 

1.9 
1.8 

  7.9 
  7.5 

0.6 
0.9 

  6.3 
  8.8 

1.1 
1.5 

Overall   7.1 0.4 11.1 1.8   7.7 0.8   7.6 1.3 
 20,000 passes  

1 
2 

10.4 
  9.5 

0.7 
2.0 

11.9 
16.7 

2.4 
2.0 

10.9 
  9.7 

0.2 
0.6 

  9.5 
11.2 

2.3 
1.8 

Overall 10.0 1.3 14.3 2.2 10.3 0.4 10.4 2.1 
 Creep Slope (mm/pass) 

1 
2 

-0.0004 
-0.0004 

 -0.0004 
-0.0004 

 -0.0003 
-0.0004 

 -0.0003 
-0.0004 

 

Overall -0.0004  -0.0004  -0.0004  -0.0004  
 Stripping Slope (mm/pass) 

1 
2 

-0.0003 
-0.0003 

 -0.0003 
-0.0003 

 -0.0003 
-0.0003 

 -0.0003 
-0.0003 

 

Overall -0.0003  -0.0003  -0.0003  -0.0003  
1  Mean of four replicates  2  SD:  Standard deviation 
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Figure 6.20 shows the average rut progression curves of all tests, and Figure 6.21 and Figure 6.22 show 

the average rut progression curves and average maximum rut for each mix, respectively. No clear 

stripping inflection points were noted in any tests, indicating that no stripping occurred in any of the 

mixes. 
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Figure 6.20:  Hamburg Wheel-Track rut progression curves for all tests. 
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Figure 6.21:  Average Hamburg Wheel-Track rut progression curves for each mix. 
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Figure 6.22:  Average Hamburg Wheel-Track rut depth for each mix. 
(Average mix production temperature, binder content, and air-void content shown.) 

 

The mixes all show similar trends, with very little difference in performance between the Control, 

Evotherm and Cecabase mixes. The average maximum rut measured after 10,000 and 20,000 repetitions 

on the Gencor mix specimens was notably higher than the other mixes. Air-void content did not appear to 

have a significant impact on performance. 

 

6.2.4 Moisture Sensitivity:  Tensile Strength Retained (TSR) Test 

Air-Void Content 

The air-void content of each core was determined using the CoreLok method. The air-void contents 

ranged between 4.5 and 7.0 percent, with the Control mix specimens having slightly lower air-void 

contents than the other three mixes (Table 6.7). It should be noted that laboratory TSR tests that are 

carried out as part of a mix design require a specimen air-void content of seven percent. 

Table 6.7:  Summary of Air-Void Contents of Tensile Strength Retained Test Specimens 
Air-Void Content (%) 

Control Gencor Evotherm Cecabase 
Condition 

Mean1 Std Dev2 Mean Std Dev Mean Std Dev Mean Std Dev 
Dry 
Wet 

5.3 
5.4 

0.5 
0.3 

5.6 
5.3 

0.3 
0.4 

6.2 
6.3 

0.3 
0.5 

6.3 
6.3 

0.4 
0.4 

1  Mean of six replicates  2  Std Dev:  Standard deviation 
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Testing 

Results of Tensile Strength Retained (TSR) tests are listed in Table D.6 in Appendix D and summarized 

for each mix in Table 6.8. A plot of the average results is shown in Figure 6.23. The results indicate that:  

 The Control mix dry and wet strengths were higher than those of the warm mixes. 
 The dry strengths of the warm mixes were similar, but the wet strengths showed more variation. 
 The recorded TSR values for all mixes were all higher than the minimum tentative criteria of 

70 percent for low environmental risk regions in the Caltrans Testing and Treatment Matrix to 
ensure moisture resistance. The Control, Evotherm, and Cecabase mixes also all had TSR values 
higher than the minimum 75 percent for medium and high environmental risk regions. However, the 
Gencor mix did not meet this criterion. The reason for this is unclear from the results, given that the 
Gencor specimen’s air-void contents were similar to the Control, lower than the other warm mixes, 
and lower than the standard test requirement of seven percent. Consequently, treatment would 
typically be required to raise the test results for this mix up to the minimum to reduce the risk of 
moisture damage in the pavement in these regions. 

 

The results showed similar trends to the Hamburg Wheel-Track test results. 

Table 6.8:  Summary of Tensile Strength Retained Test Results 
Indirect Tensile Strength (kPa) 

Control Gencor Evotherm Cecabase 
Parameter 

Mean1 Std Dev2 Mean Std Dev Mean Std Dev Mean Std Dev 
Dry Test 
Wet Test 

1,018 
47 

778 
22 

903 
39 

658 
25 

901 
16 

728 
104 

881 
42 

712 
40 

TSR 77.2 72.5 78.1 81.6 
Damage - Yes - Yes - Yes - Yes 
1  Mean of six replicates  2  Std Dev:  Standard deviation 
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Figure 6.23:  Average tensile strength retained for each mix. 



 

 
106 UCPRC-RR-2011-02 

Observation of the split faces of the cores revealed very little internal stripping (loss of adhesion between 

asphalt and aggregate evidenced by clean aggregate on the broken face) after moisture conditioning. 

 

6.3 Summary of Laboratory Testing Results 

The laboratory test results indicate that use of the warm-mix technologies assessed in this study, produced 

and compacted at lower temperatures, did not significantly influence the performance of the asphalt 

concrete when compared to control mixes produced and compacted at conventional hot-mix asphalt 

temperatures. Specific observations include: 

 Shear performance of the Evotherm and Cecabase mixes did appear to be influenced in part by the 
lower mix production and construction temperatures, which would have resulted in less oxidation of 
the binder and consequent lower stiffness of the mix. However, the differences were not statistically 
significant. Rutting performance under accelerated load testing did not appear to be affected, 
however. Fatigue performance and moisture sensitivity also did not appear to be affected. 

 The Gencor (water injection technology) mix appeared to have lower moisture resistance compared 
to the other three mixes in all the moisture sensitivity tests, and did not meet the Caltrans-specified 
performance requirements for medium and high environmental risk regions. This mix was produced 
at a higher temperature than the other two warm mixes and contained no moisture. 

 Test results were influenced by mix production temperatures, actual binder content, specimen air-
void content, actual stress and strain levels, and actual test temperature. These parameters need to 
be taken into consideration when comparing performance between the different mixes. 
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7. CONCLUSIONS AND PRELIMINARY RECOMMENDATIONS 

7.1 Conclusions 

This first-level report describes part of the third phase of a warm-mix asphalt study, which compares the 

performance of a gap-graded rubberized asphalt control mix, produced and constructed at conventional 

hot-mix asphalt temperatures (320°F [160°C]), with three warm mixes produced at between 36°F (20°C) 

and 63°F (35°C) lower than the control. The technologies tested included water injection (Gencor 

Ultrafoam GX®, produced at 284°F [140°C]) and two chemical surfactants (Evotherm DATTM, produced at 

248°F [125°C] and Cecabase®, produced at 266°F [130°C]). The test track layout and design, mix design 

and production, and test track construction are discussed, as are results of Heavy Vehicle Simulator (HVS) 

and laboratory testing. 

 

Key findings from the study include the following: 

 A consistent subgrade was prepared and consistent base-course and underlying dense-graded hot-
mix asphalt concrete layers were constructed on the test track using materials sourced from a nearby 
quarry and asphalt plant. Thickness and compaction of the base and bottom layer of asphalt were 
consistent across the test track. 

 Minimal asphalt plant modifications were required to accommodate the warm-mix technologies, 
and the delivery systems were approved under the Caltrans Material Plant Quality Program. 

 No problems were noted with producing the asphalt mixes at the lower temperatures. Target mix 
production temperatures (320°F, 284°F, 248°F, and 266°F [160°C, 125°C, 140°C, and 130°C] for 
the Control, Gencor, Evotherm, and Cecabase mixes, respectively), set by the warm-mix technology 
providers, were all achieved. There was very little variation in mix properties among the four mixes. 
Hveem stabilities, determined at three different curing regimes, exceeded the minimum requirement 
by a considerable margin. Curing did not appear to influence the stability. No moisture was 
measured in the mixes after production. 

 Compaction temperatures differed considerably between the mixes and were consistent with 
production temperatures. The Evotherm and Cecabase mixes, produced at 248°F and 266°F (140°C 
and 130°C), respectively, lost heat at a slower rate during transport and placement than the Control 
and Gencor mixes, produced at the higher temperatures. The lower temperatures in the three warm-
mixes did not appear to influence the paving or compaction operations, and interviews with the 
paving crew after construction revealed that no problems were experienced at the lower 
temperatures. Improved working conditions were identified as an advantage. 

 Smoke and odors were significantly more severe on the Control section compared to the Gencor 
section. No smoke or odors were noted on the Evotherm and Cecabase sections. 

 Mix workability of the mix, determined through observation of and interviews with the paving 
crew, was considerably better on the warm-mix sections compared to the Control. 

 Average thicknesses of the top (rubberized) and bottom asphalt layers across the four sections were 
0.22 ft. (66 mm) and 0.23 ft. (74 mm), respectively. The average thickness of the combined two 
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layers was 0.45 ft. (137 mm), 0.05 ft. (17 mm) thicker than the design thickness of 0.4 ft. (120 mm). 
General consistency of thickness across the track was considered satisfactory and representative of 
typical construction projects. 

 Nuclear gauge–determined density measurements were inconsistent with core-determined air-void 
contents. The core determined air-void contents indicated that slightly higher density was achieved 
on the Control section (95 percent of the RICE specific gravity) compared to the warm-mix sections 
(94 percent). Compaction across the test track appeared to be consistent and it was concluded that 
adequate compaction can be achieved on rubberized warm-mixes at lower temperatures. Based on 
observations from the test track construction and interviews with roller operators, optimal 
compaction temperatures will differ among the different warm-mix technologies, but adequate 
compaction can be achieved on warm-mixes at the lower temperatures. Roller operators will, 
however, need to consider that there might be differences in roller response between warm-mix and 
conventional hot-mixes, and that rolling operations and patterns may need to be adjusted to ensure 
that optimal compaction is always achieved. 

 HVS trafficking on each of the four sections revealed that the duration of the embedment phases on 
all sections were similar; however, the depth of the ruts at the end of the embedment phases differed 
slightly between sections, with the Gencor (6.5 mm [0.26 in.]) and Cecabase (5.5 mm [0.22 in.]) 
having less embedment than the Control and Evotherm sections, which had similar embedment 
(7.9 mm [0.31 in.]). This is opposite to the early rutting performance in the Phase 1 study. 

 Rut rate (increase in rut depth per load repetition) after the embedment phase on the Control and 
Evotherm sections was almost identical. On the Gencor and Cecabase sections, rut rate was 
considerably slower than the Control after the embedment phase. The difference in performance 
between the three warm-mix sections is attributed in part to the lower production and paving 
temperatures of the Evotherm mix compared to the other warm mixes, as well as to the thickness of 
the asphalt layers (the Evotherm section had thinner asphalt layers than the Control and Cecabase 
sections). 

 The laboratory test results indicate that use of the warm-mix technologies assessed in this study, 
produced and compacted at lower temperatures, did not significantly influence the performance of 
the asphalt concrete when compared to control specimens produced and compacted at conventional 
hot-mix asphalt temperatures. Specific observations include the following: 
+ Shear performance of the Evotherm and Cecabase mixes did appear to be influenced in part by 

the lower mix production and construction temperatures, which would have resulted in less 
oxidation of the binder and consequent lower stiffness of the mix. Rutting performance under 
accelerated load testing did not appear to be affected, however. Fatigue performance and 
moisture sensitivity also did not appear to be affected. 

+ The Gencor (water injection technology) mix appeared to have lower moisture resistance 
compared to the other three mixes in all the moisture sensitivity tests. This mix was produced at 
a higher temperature than the other two warm mixes and contained no moisture. 

+ Laboratory test results were influenced by mix production temperatures, actual binder content, 
specimen air-void content, actual stress and strain levels, and actual test temperature. These 
parameters need to be taken into consideration when comparing performance between the 
different mixes. 

 

The findings of the study are also summarized below in the form of answers to the questions identified in 

Section 1.3. 
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7.1.1 Comparative Energy Usage 

Comparative energy usage could not be assessed in this study due to the very small quantities produced. 

These studies will need to be carried out during larger full-scale pilot studies on in-service pavements 

when large quantities of mix are produced (i.e., more than 5,000 tonnes). 

 

7.1.2 Achieving Compaction Density at Lower Temperatures 

Compaction measurements during construction indicated that average air-void contents on the warm-mix 

sections were marginally higher than on the Control sections, but were typical of full-scale construction 

projects. Based on these observations it is concluded that adequate compaction can be achieved on warm-

mixes at lower temperatures. Optimal compaction temperatures will differ among the different warm-mix 

technologies. Roller operators will need to consider that there might be differences in roller response 

between warm-mix and conventional hot mixes, and that rolling operations and patterns may need to be 

adjusted to ensure that optimal compaction is always achieved. Contractors will need to determine mix 

production temperatures based on required compaction temperatures, and take loss of temperature during 

silo storage and transportation into consideration. 

 

7.1.3 Optimal Temperature Ranges for Warm-Mixes 

Optimal compaction temperatures will differ between the different warm-mix technologies. This study has 

shown that temperatures of at least 35°C (60°F) lower than conventional temperatures are appropriate for 

producing and compacting the modified mixes. 

 

7.1.4 Cost Implications 

The cost benefits of using the warm-mix technologies could not be assessed in this study due to the very 

small quantities produced. 

 

7.1.5 Rutting Performance 

Based on the results of HVS testing, it is concluded that the use of any of the three warm-mix asphalt 

technologies used in this experiment will not significantly influence the rutting performance of the mix. 

 

7.1.6 Moisture Sensitivity 

Laboratory moisture sensitivity testing indicated that the water injection technology (Gencor) showed 

lower moisture resistance compared to the other mixes, but still met Caltrans-specified performance 

requirements in most instances. No moisture sensitivity was noted during accelerated pavement testing. 
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7.1.7 Fatigue Performance 

Laboratory fatigue testing indicated that the warm-mix technologies used in this study will not influence 

the fatigue performance of a mix. 

 

7.1.8 Other Effects 

Smoke and odors were significantly reduced during construction of the warm-mix sections compared to 

the Control. The workability of the warm-mixes in terms of raking and shoveling was also considerably 

better than the Control mix. 

 

7.2 Preliminary Recommendations 

The HVS and laboratory testing completed in this phase have provided no results to suggest that warm-

mix technologies should not be used in gap-graded rubberized mixes in California, provided that standard 

specified construction and performance limits for hot-mix asphalt are met. Significant reductions in smoke 

and odors and improved workability of the warm mixes also support wider use of these technologies. 

Consideration should be given to further study into the effects of warm-mix asphalt technologies and 

production and placement of warm-mixes at lower temperatures on binder oxidation/aging rates.  The 

effects that these may have on performance over the life of the asphalt surfacing should also be 

investigated. Research in this study has shown differences in early rutting performance between 

conventional and rubber mixes, between mixes tested after different curing periods, and between 

pavements subjected to mostly shade and mostly sun, respectively. 
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APPENDIX A: MIX DESIGN 

A.1 Mix Design 
The mix design, developed by Granite Construction and used for the production of the four mixes (control 

plus three warm-mixes) at the Granite Construction Bradshaw Asphalt Plant is provided in Figure A.1. 
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Figure A.1:  Mix design. 
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Source. Bradshaw Plant 
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Figure A.1:  Mix design (continued). 

 

liRAniTE 
CDnSTRUCTIDn 
comPAilY Sf~E 

..aa•IIITO~-o• 

Plant Brad~aw 

Product Code 2033 (09BA) 

Date Completed 09/24/09 
Paramount PG 64-16 

1/2 inch - RHMA-G 

H OT MIX ASPH ALT LABORATORY TEST RESULTS* 

%AC 
%Air %Air Corrected 

VMA VFA 
Film Dust 

Voids Voids Stability Thickness Proportion 
(DWA) 

(CT 309) (CT367) CT366 
LP-2 LP-3 

MS-2 LP-4 

6.50 5.3 NA 41 18.7 71.7 11.6 0.76 
7.00 4.6 NA 35 19.0 75.7 12.6 0.70 
7.50 3.5 NA 32 19.0 81.5 13.6 0.65 
8.00 3.2 NA 33 19.6 83.9 14.5 0.61 

*Each Result Represents the Average of Three Rephcate SaJ:q>les (See Page 3 of3 for graphs) 

HOT MIX ASPHALT PROPERTIES 

MIXTURE PROPERTIES AT OPTIMUM OIL CONTENT 

OPTIMUM TOTAL OIL CONIENT (DWA), % 7.0 
)pT. VIRGIN OIL CONTENT IF RAP MIX (DWA),% NA 

LAB COMP AClED UNIT WEIGHT (CT308), pcf 148.6 
AIR VOIDS (CT367),% 4.5 

MAXIMUM THEORETICAL DENSITY (CT367), pcf 
AIR VOIDS (CT 367 utilizing CT309), % 

MAXIMUM THEO. DENSITY (CT309), pcf 2.492 
HVEEM STABILITY, Min. (CT366) 35 

VMA (LP-2),%, Min. 18.9 
VFA (LP-3),% 76.5 

FILM THICKNESS, 11m (MS-2) NA 
DUST PROPORTION (LP-4) 0.7 
SWELL (CT 305), Inch, Max. -

SPECS. 

NIA 

NIA 

NIA 

4 ± 2% 
NIA 

NIA 
NfA 

23 

18 
65 -75 

NIA 

N/A 

0.03 

RAP PROPERTIES 

A.C. CONTENT I 4.0 
(DWA)% 

GRADATION *, SEE PAGE 1 OF 4 

* GRADATION PERFORMED AFTER 
CHEMICAL EXTRACTION 

Mixing Temperature 230 
Compaction Temp. 230 

Compaction Method CT 

AGGREGATE PROP ERTIES 

FINE AGGREGATE P ROPERTIES SPECS. COARSE AGGREGATE PROPERTIES 

Bulk Specific Gravity (CT 206) 2.665 - Bulk Specific Gravity (CT 206) I 2.796 
Absorption(%) (CT 206) 1.70 - Absorption (%) (CT 206) I 0.57 

Apparent Specific Gravity (CT 208) 2. 772 - oss Angeles Abrasion (CT 211) 
Sand Equivalent (CT 217) 71 47 min. Loss @ 100 Revs I 3 
Fine Aggregate Angularity 

46.3 45 min. 
(AASHTO T304, A) 

Loss@ 500 Revs I 15 
Percent Crushed Particles (CT 205) 

Percent Crushed Particles (CT 205) 0 70 min. 1 Face I 100 
Kr Factor 1.1 1.7 max. 2 Faces I 100 

Plasticity Index - - Flat and Elongated Particles (ASTM D4 791) 
Liquid Limit - - % max. by weight I 5.6 

K, Factor I 0.4 

COMBINED AGG. PROPERTIES SPECS. 

SPECS. 

-
-

l10max. 
1 45 max. 

l 90min. 

I -

15:1 max. 

1.7 max. 

Sodium Sulfate Sounduess (CT 214) 
Loss After 5 Cycles - -

Reviewed by: Dan Ridolfi 
9/24/2009 

~ulk Specific Gravity (CT 367) 2. 787 - GRAniTE 
!Bulk Specific Gravity (LP - 2) 2. 743 - P age 1 of 4 EnxineerinJt &~Vices 
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Figure A.1:  Mix design (continued). 
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APPENDIX B: TEST PIT PROFILES 

B.1 Dynamic Cone Penetrometer 
Dynamic cone penetrometer (DCP) profiles taken outside and within the wheelpath are shown in 

Figure B.1 through Figure B.4. Profiles were taken after removal of the asphalt concrete during excavation 

of the test pits. DCP profile details are as follows: 

 Figure B.1:  620HA:  Phase 3a Control 
 Figure B.2:  621HA:  Phase 3a Gencor 
 Figure B.3:  622HA:  Phase 3a Evotherm 
 Figure B.4:  623HA:  Phase 3a Cecabase 

 

B.2 Layer Thickness and Rutting 
 

Test pit profiles for each test section are shown in Figure B.5 through Figure B.8. All test pits were 

excavated between Station 9 and Station 11. All profiles show the test pit face at Station 9. Test pit details 

are as follows: 

 Figure B.5:  620HA:  Phase 3a Control after 74,000 repetitions 
 Figure B.6:  621HA:  Phase 3a Gencor after 159,000 repetitions 
 Figure B.7:  622HA:  Phase 3a Evotherm after 200,000 repetitions 
 Figure B.8:  623HA:  Phase 3a Cecabase after 224,000 repetitions 
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Figure B.1:  620HA:  Control DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure B.2:  621HA:  Gencor DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure B.3:  622HA:  Evotherm DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure B.4:  623HA:  Cecabase DCP profile (untrafficked [left] and wheelpath [right]). 
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Figure B.5:  620HA:  Control test pit profile (after 74,000 load repetitions). 
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Figure B.6:  621HA:  Gencor test pit profile (after 159,000 load repetitions). 
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Figure B.7:  622HA:  Evotherm test pit profile (after 200,000 load repetitions). 
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Figure B.8:  623HA:  Cecabase test pit profile (after 224,000 load repetitions). 
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APPENDIX C: BEAM FATIGUE SOAKING PROCEDURE 

C.1 Preparation of Specimens 
Prepare the specimens as follows: 

1. Measure and record the bulk specific gravity, width, and height of each beam. 

2. Dry each beam is dried at room temperature (around 30C) in a forced draft oven or in a concrete 

conditioning room to constant mass (defined as the mass at which further drying does not alter the 

mass by more than 0.05 percent at two-hour drying intervals). Record the final dry mass. Note:  

Place beams on a rigid and flat surface during drying. 

3. Using epoxy resin, bond a nut to be used for supporting the LVDT to the beam. Record the mass 

of the beam with the nut. 

 

C.2 Conditioning of Specimens 
1. Place the beam in the vacuum container supported above the container bottom by a spacer. Fill the 

container with water so that the beam is totally submerged. Apply a vacuum of 635 mm (25 in.) of 

mercury for 30 minutes. Remove the vacuum and determine the saturated surface dry mass 

according to AASHTO T-166. Calculate the volume of absorbed water and determine the degree 

of saturation. If the saturation level is less than 70 percent, vacuum saturate the beam for a longer 

time and determine the saturated surface dry mass again. 

2. Place the vacuum-saturated beam in a water bath with the water temperature pre-set at 60C. The 

beam should be supported on a rigid, flat (steel or wood) plate to prevent deformation of the beam 

during conditioning. The top surface of the beam should be about 25 mm below the water surface. 

3. After 24 hours, drain the water bath and refill it with cold tap water. Set the water bath 

temperature to 20C. Wait for two hours for temperature equilibrium. 

4. Remove the beam from the water bath, and determine its saturated surface dry mass. 

5. Wrap the beam with Parafilm to ensure no water leakage.  

6. Check the bonded nut. If it becomes loose, remove it and rebond it with epoxy resin. 

7. Apply a layer of scotch tape to the areas where the beam contacts the clamps of the fatigue 

machine. This will prevent adhesion between the Parafilm and the clamps. 

8. Start the fatigue test of the conditioned beam within 24 hours. 
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APPENDIX D: LABORATORY TEST RESULTS 

D.1 Shear Test Results 
Shear test results are summarized in Table D.1 through Table D.4. 

 

D.2 Beam Fatigue Test Results 
Beam fatigue test results are summarized in Table D.5. 

 

D.3 Tensile Strength Retained Test Results 
Tensile strength retained test results are summarized in Table D.6. 
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Table D.1:  Summary of Shear Test Results for Control Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
(°C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

G1-16-ST-7045 
G1-19-ST-7045 
G1-29-ST-7045 

5.4 
4.4 
4.8 

41.97 
44.95 
44.96 

  74.37 
  71.26 
  74.70 

191.99 
112.66 
137.23 

0.034445 
0.044573 
0.041492 

29,386 
  8,465 
12,824 

G1-23-ST-10045 
G1-34-ST-10045 
G1-51-MT-10045 

4.3 
4.5 
5.5 

44.80 
44.94 
44.80 

  99.53 
101.79 
104.16 

141.56 
150.88 
167.41 

0.065968 
0.047113 
0.038856 

  2,304 
  6,482 
15,140 

G1-12-ST-13045 
G1-46-MT-13045 
G1-47-MT-13045 

4.3 
4.7 
4.9 

44.98 
44.94 
44.82 

130.78 
134.69 
132.32 

145.76 
150.87 
175.04 

0.065331 
0.044655 
0.045206 

  1,995 
  7,527 
  7,262 

G1-25-ST-7055 
G1-33-ST-7055 
G1-48-MT-7055 

4.5 
4.2 
5.5 

54.95 
54.73 
54.94 

  73.99 
  69.98 
  74.41 

  96.87 
  75.33 
  84.96 

0.051323 
0.061190 
0.043692 

  4,558 
  2,440 
  8,614 

G1-22-ST-10055 
G1-49-MT-10055 
G1-50-MT-10055 

5.1 
4.9 
5.5 

48.29 
54.59 
55.05 

  94.30 
  97.29 
101.10 

  70.04 
  85.63 
  92.67 

0.084843* 
0.069226 
0.067358 

  828 
  1,712 
  2,067 

G1-15-ST-13055 
G1-31-ST-13055 
G1-52-MT-13055 

4.5 
5.2 
4.8 

55.43 
54.90 
54.94 

124.98 
126.45 
124.80 

  73.82 
  80.10 
  69.69 

0.157429* 
0.148309* 
0.128241* 

  414 
  384 
  455 

*:  Extrapolated results 

 

 

Table D.2:  Summary of Shear Test Results for Gencor Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
(°C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

G2-17-ST-7045 
G2-22-ST-7045 
G2-37-ST-7045 

8.3 
5.0 
5.1 

45.37 
45.00 
45.04 

  72.44 
  74.01 
  71.17 

159.84 
194.70 
144.13 

0.041769 
0.037447 
0.050822 

10,906 
27,723 
  4,632 

G2-14-ST-10045 
G2-21-ST-10045 
G2-48-ST-10045 

5.9 
8.1 
5.2 

45.00 
45.02 
44.94 

  98.05 
102.45 
101.78 

159.08 
167.15 
176.22 

0.051678 
0.040777 
0.063027 

  4,212 
11,401 
  2,199 

G2-15-ST-13045 
G2-19-ST-13045 
G2-27-ST-13045 

9.3 
9.0 
7.6 

44.94 
44.75 
44.88 

133.67 
134.28 
132.95 

190.00 
163.83 
158.61 

0.060155 
0.073473 
0.060855 

  2,498 
  1,488 
  2,640 

G2-12-ST-7055 
G2-29-ST-7055 
G2-36-ST-7055 

5.5 
4.0 
5.4 

55.06 
54.64 
54.87 

  70.63 
  69.67 
  66.11 

  79.62 
  76.38 
  69.23 

0.063320 
0.083635 
0.081743 

  2,112 
     860 
  1,106 

G2-13-ST-10055 
G2-18-ST-10055 
G2-34-ST-10055 

9.0 
4.8 
4.9 

54.95 
54.90 
54.89 

  78.81 
  94.74 
  95.56 

  84.23 
  74.07 
  68.18 

0.080246 
0.078200 

  0.108993* 

  1,110 
  1,359 
     463 

G2-16-ST-13055 
G2-26-ST-13055 
G2-33-ST-13055 

5.0 
5.0 
4.6 

54.97 
55.00 
54.54 

128.37 
125.06 
129.26 

  78.92 
  73.21 
  85.16 

  0.135867* 
  0.153997* 
  0.128837* 

    316 
    218 
    318 

*:  Extrapolated results 
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Table D.3:  Summary of Shear Test Results for Evotherm Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
( C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

G3-17-ST-7045 
G3-21-ST-7045 
G3-30-ST-7045 

6.0 
5.5 
6.4 

44.82 
44.91 
44.87 

  72.90 
  73.02 
  73.01 

141.80 
152.53 
172.33 

0.053803 
0.053297 
0.048798 

  3,536 
  3,905 
  5,657 

G3-24-ST-10045 
G3-32-ST-10045 
G3-35-ST-10045 

5.8 
6.2 
6.3 

45.10 
45.15 
44.87 

103.91 
103.86 
100.97 

203.27 
170.81 
141.61 

0.053267 
0.062158 
0.062525 

  3,718 
  2,516 
  2,212 

G3-12-ST-13045 
G3-19-ST-13045 
G3-20-ST-13045 

6.3 
6.2 
5.8 

44.88 
45.21 
44.97 

135.82 
134.35 
135.12 

178.51 
148.10 
157.10 

0.092844 
0.087085 
0.082564 

  1,072 
   955 
  1,152 

G3-25-ST-7055 
G3-34-ST-7055 
G3-36-ST-7055 

5.4 
5.8 
6.2 

55.00 
54.76 
55.20 

  70.56 
  71.12 
  70.07 

202.40 
  80.01 
  69.77 

0.038043 
0.071155 
0.057152 

10,727 
  1,367 
  2,996 

G3-13-ST-10055 
G3-15-ST-10055 
G3-29-ST-10055 

5.7 
5.6 
5.9 

54.95 
55.02 
54.74 

102.59 
103.64 
101.33 

250.48 
159.67 
  76.59 

0.040067 
0.053620 

0.133879* 

10,079 
  3,949 
     358 

G3-31-ST-13055 
G3-33-ST-13055 
G3-37-ST-13055 

5.9 
5.6 
5.7 

54.90 
54.91 
54.98 

129.36 
123.84 
132.82 

  72.30 
  54.31 
  90.17 

0.116150* 
0.161348* 
0.146410* 

    354 
    157 
    656 

*:  Extrapolated results 

 

 

Table D.4:  Summary of Shear Test Results for Cecabase Mix 

Specimen 
Designation 

Air-Void 
Content 

 
(%) 

Test 
Temp. 

 
( C) 

Test Shear 
Stress Level 

 
(kPa) 

Initial 
Resilient Shear 

Modulus 
(kPa) 

Percent 
Permanent 

Shear Strain at 
5,000 Cycles 

Cycles to 5% 
Permanent 

Shear Strain 

G4-19-ST-7045 
G4-22-ST-7045 
G4-32-ST-7045 

5.2 
6.1 
5.7 

44.60 
44.73 
44.64 

  69.98 
  72.55 
  70.36 

156.89 
180.11 
151.02 

0.045850 
0.047605 
0.050567 

6,937 
6,202 
4,738 

G4-15-ST-10045 
G4-17-ST-10045 
G4-31-ST-10045 

5.5 
5.9 
5.9 

44.89 
44.80 
44.76 

100.06 
100.80 
101.44 

144.36 
179.24 
152.49 

0.063009 
0.061758 
0.061130 

1,651 
2,203 
2,461 

G4-21-ST-13045 
G4-27-ST-13045 
G4-48-MT-13045 

6.3 
5.0 
5.2 

44.92 
45.17 
45.25 

128.74 
137.26 
135.00 

166.80 
157.24 
160.63 

0.063638 
0.081656 
0.079591 

1,709 
   631 
1,137 

G4-23-ST-7055 
G4-33-ST-7055 
G4-37-ST-7055 

4.5 
5.9 
5.1 

54.54 
54.92 
54.66 

  69.65 
  72.95 
  70.81 

  75.72 
  69.25 
  72.22 

0.071848 
0.072313 
0.078510* 

1,043 
   854 
   823 

G4-16-ST-10055 
G4-25-ST-10055 
G4-50-MT-10055 

5.4 
6.9 
5.4 

55.10 
54.97 
54.92 

  93.21 
  96.08 
  93.43 

  71.07 
  79.87 
  69.39 

0.087514 
0.094599 
0.092451 

   486 
   629 
   513 

G4-12-ST-13055 
G4-20-ST-13055 
G4-36-ST-13055 

4.7 
5.2 
5.8 

55.05 
55.24 
54.91 

127.74 
128.96 
128.65 

  80.95 
  91.16 
  59.92 

0.135345* 
0.119414* 
0.133603* 

   201 
   289 
   383 

*:  Extrapolated results 
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Table D.5:  Summary of Beam Fatigue Test Results 

Mix Cond. Specimen 

Air-Void 
Content1 

 
(%) 

Test 
Temp. 

 
(°C) 

Test 
Strain 
Level 

(µstrain) 

Initial 
Phase 
Angle 
(Deg.) 

Initial 
Stiffness 

 
(MPa) 

Fatigue 
Life 

 
(Nf) 

Dry 

G1-04-B1 
G1-13-B2 
G1-14-B3 
G1-10-B3 
G1-11-B3 
G1-14-B2 

3.78 
4.63 
5.21 
4.13 
3.90 
5.67 

19.76 
19.77 
19.79 
19.92 
19.81 
20.19 

0.000204 
0.000205 
0.000206 
0.000399 
0.000403 
0.000416 

25.11 
25.07 
24.67 
19.98 
28.44 
28.27 

5,822 
5,630 
5,421 
6,054 
5,576 
4,426 

29,121,863* 
30,889,886* 
31,263,809* 

498,596 
488,640 
321,255 Control 

Wet 

G1-05-B2 
G1-09-B2 
G1-15-B2 
G1-05-B1 
G1-09-B3 
G1-13-B1 

3.71 
3.97 
5.26 
3.99 
5.07 
4.63 

20.08 
20.03 
20.03 
20.19 
20.09 
20.05 

0.000206 
0.000207 
0.000200 
0.000402 
0.000401 
0.000398 

27.40 
25.58 
25.03 
28.27 
26.07 
26.72 

5,396 
5,573 
5,050 
5,003 
5,110 
4,736 

12,426,049* 
17,263,849* 
16,424,590* 

175,550 
108,681 
180,723 

Dry 

G2-04-B1 
G2-08-B1 
G2-09-B3 
G2-06-B2 
G2-07-B1 
G2-07-B2 

6.49 
6.72 
6.95 
7.42 
6.40 
7.17 

19.78 
19.77 
19.78 
19.81 
19.88 
19.78 

0.000205 
0.000206 
0.000205 
0.000407 
0.000401 
0.000403 

25.41 
23.88 
20.33 
26.66 
18.62 
25.25 

5,225 
5,721 
6,842 
4,754 
5,384 
5,187 

30,364,428* 
17,814,777* 

7,119,470* 
224,635 
144,114 
201,888 Gencor 

Wet 

G2-01-B3 
G2-02-B2 
G2-12-B1 
G2-02-B1 
G2-03-B3 
G2-12-B2 

7.21 
6.37 
6.15 
7.35 
7.14 
6.17 

21.11 
20.12 
20.13 
19.97 
20.16 
20.30 

0.000203 
0.000208 
0.000208 
0.000416 
0.000411 
0.000405 

25.88 
26.31 
25.16 
27.73 
26.00 
27.03 

4,474 
4,556 
4,615 
3,804 
3,969 
4,198 

1,469,612* 
3,810,683 
4,342,136 

54,805 
29,691 
24,123 

Dry 

G3-05-B2 
G3-07-B2 
G3-08-B1 
G3-07-B1 
G3-08-B2 
G3-09-B2 

5.87 
6.36 
6.09 
6.02 
5.71 
6.34 

20.38 
20.14 
19.98 
19.94 
20.00 
19.77 

0.000208 
0.000206 
0.000206 
0.000405 
0.000406 
0.000403 

23.75 
22.91 
16.77 
17.68 
19.66 
24.99 

6,058 
6,084 
5,898 
5,863 
5,599 
5,425 

10,208,217* 
10,792,051* 
58,850,271* 

73,863 
330,563 
108,871 Evotherm 

Wet 

G3-03-B2 
G3-06-B2 
G3-09-B1 
G3-01-B3 
G3-02-B1 
G3-03-B3 

5.79 
7.15 
5.70 
6.84 
6.63 
5.88 

20.12 
19.13 
19.98 
19.98 
20.17 
21.08 

0.000208 
0.000201 
0.000208 
0.000417 
0.000408 
0.000400 

24.95 
23.64 
25.09 
21.36 
21.97 
22.33 

5,177 
5,047 
5,102 
6,090 
5,737 
5,848 

12,092,693* 
3,618,056 

6,166,944* 
35,922 
43,294 
57,832 

Dry 

G4-02-B3 
G4-03-B3 
G4-09-B1 
G4-01-B1 
G4-06-B2 
G4-08-B2 

7.13 
7.75 
6.38 
7.72 
7.21 
6.24 

21.06 
19.91 
20.33 
20.16 
21.12 
21.23 

0.000201 
0.000204 
0.000209 
0.000406 
0.000396 
0.000398 

24.06 
17.88 
19.56 
25.82 
25.16 
25.26 

5,516 
5,356 
7,238 
5,187 
5,399 
5,592 

14,799,268* 
52,120,468* 

3,614,010 
133,149 
144,856 
74,501 Cecabase 

Wet 

G4-01-B2 
G4-07-B2 
G4-07-B3 
G4-05-B2 
G4-07-B1 
G4-08-B3 

7.02 
6.23 
6.37 
7.09 
6.13 
6.54 

20.01 
20.71 
20.17 
20.78 
20.13 
19.85 

0.000210 
0.000202 
0.000207 
0.000402 
0.000405 
0.000422 

27.75 
28.42 
27.34 
23.88 
25.09 
25.96 

4,431 
4,732 
4,701 
5,167 
5,235 
4,991 

16,308,611* 
12,705,336* 
16,392,610* 

64,692 
148,694 
50,026 

*  Extrapolated results    1  Air-void content was measured with the CoreLok method. 
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Table D.6:  Summary of Tensile Strength Retained Test Results 

Mix Condition Specimen 
Air-Void 

 
(%) 

Strength 
 

(kPa) 

Average 
Strength 

(kPa) 

Std. 
Dev. 

 

TSR 
 

(%) 

Dry 

G1-54-T 
G1-58-T 
G1-60-T 
G1-63-T 
G1-65-T 
G1-68-T 

5.65 
5.36 
5.85 
4.46 
5.61 
4.95 

   961 
1,016 
1,086 
1,014 
1,052 
   974 

1,017 47 

Control 

Wet 

G1-55-T 
G1-53-T 
G1-59-T 
G1-61-T 
G1-62-T 
G1-67-T 

5.72 
5.60 
5.39 
5.14 
4.96 
5.67 

   798 
   786 
   735 
   781 
   775 
   788 

  778 21 

77.2 

Dry 

G2-64-T 
G2-56-T 
G2-58-T 
G2-65-T 
G2-63-T 
G2-66-T 

5.81 
5.19 
5.30 
5.66 
6.11 
5.51 

   873 
   918 
   968 
   917 
   876 
   864 

  903 39 

Gencor 

Wet 

G2-53-T 
G2-59-T 
G2-67-T 
G2-57-T 
G2-55-T 
G2-54-T 

5.05 
5.75 
5.63 
4.93 
5.18 
4.96 

   708 
   643 
   641 
   658 
   647 
   651 

  658 25 

72.5 
 

Dry 

G3-61-T 
G3-62-T 
G3-55-T 
G3-60-T 
G3-57-T 
G3-65-T 

6.27 
5.89 
6.35 
6.56 
5.83 
6.24 

   928 
   882 
   893 
   910 
   894 
   897 

  901 16 

Evotherm 

Wet 

G3-53-T 
G3-64-T 
G3-54-T 
G3-68-T 
G3-56-T 
G3-58-T 

7.01 
6.36 
6.04 
6.42 
5.68 
6.58 

   748 
   926 
   631 
   689 
   669 
   701 

  728 104 

78.1 

Dry 

G4-58-T 
G4-54-T 
G4-65-T 
G4-68-T 
G4-57-T 
G4-66-T 

5.72 
6.80 
6.71 
6.25 
6.17 
5.93 

   903 
   865 
   842 
   862 
   855 
   956 

  881 42 

Cecabase 

Wet 

G4-60-T 
G4-56-T 
G4-65-T 
G4-67-T 
G4-55-T 
G4-59-T 

6.11 
6.64 
5.84 
6.38 
6.96 
6.04 

   713 
   697 
   774 
   706 
   651 
   728 

  712 40 

81.6 

 

 



 

 
132 UCPRC-RR-2011-02 

 

 

 

 

 


	EXECUTIVE SUMMARY
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CONVERSION FACTORS
	1. INTRODUCTION
	1.1 Background
	1.2 Project Objectives
	1.3 Overall Project Organization
	1.3.1 Project Deliverables

	1.4 Structure and Content of this Report
	1.4.1 Warm-Mix Technologies Tested
	1.4.2 Report Layout

	1.5 Measurement Units
	1.6 Terminology

	2. TEST TRACK LOCATION, DESIGN, AND CONSTRUCTION
	2.1 Experiment Location
	2.2 Test Track Layout
	2.3 Pavement Design
	2.4 Subgrade Preparation
	2.4.1 Equipment
	2.4.2 Preparation
	2.4.3 Quality Control

	2.5 Base-Course Construction
	2.5.1 Material Properties
	2.5.2 Equipment
	2.5.3 Construction
	2.5.4 Quality Control
	2.5.5 Follow-Up Testing Prior to Paving

	2.6 Bottom Lift Asphalt Concrete Construction
	2.6.1 Material Properties
	2.6.2 Equipment
	2.6.3 Prime Coat Application
	2.6.4 Asphalt Placement
	2.6.5 Construction Quality Control

	2.7 Rubberized Gap-Graded Asphalt Concrete Construction
	2.7.1 Plant Modifications
	2.7.2 Material Properties
	2.7.3 Warm-Mix Technology Application Rates
	2.7.4 Mix Production Temperatures
	2.7.5 Mix Production
	2.7.6 Mix Production Quality Control
	Asphalt Binder
	Asphalt Mix

	2.7.7 Paving Equipment
	2.7.8 Tack Coat Application
	2.7.9 Asphalt Placement
	Control Section
	Gencor Section
	Evotherm Section
	Cecabase Section
	General

	2.7.10 Construction Quality Control
	Placement and Compaction Temperatures
	Thickness
	Compaction Density
	Deflection


	2.8 Sampling
	2.9 Postconstruction Observations
	2.10 Construction Summary

	3. TEST TRACK LAYOUT AND HVS TEST CRITERIA
	3.1 Protocols
	3.2 Test Track Layout
	3.3 HVS Test Section Layout
	3.4 Pavement Instrumentation and Monitoring Methods
	3.5 HVS Test Criteria
	3.5.1 Test Section Failure Criteria
	3.5.2 Environmental Conditions
	3.5.3 Test Duration
	3.5.4 Loading Program


	4. PHASE 3a HVS TEST DATA SUMMARY
	4.1 Introduction
	4.2 Rainfall
	4.3 Section 620HA:  Control
	4.3.1 Test Summary
	4.3.2 Outside Air Temperatures
	4.3.3 Air Temperatures in the Temperature Control Unit
	4.3.4 Temperatures in the Asphalt Concrete Layers
	4.3.5 Permanent Surface Deformation (Rutting)
	4.3.6 Visual Inspection

	4.4 Section 621HA:  Gencor
	4.4.1 Test Summary
	4.4.2 Outside Air Temperatures
	4.4.3 Air Temperatures in the Temperature Control Unit
	4.4.4 Temperatures in the Asphalt Concrete Layers
	4.4.5 Permanent Surface Deformation (Rutting)
	4.4.6 Visual Inspection

	4.5 Section 622HA:  Evotherm
	4.5.1 Test Summary
	4.5.2 Outside Air Temperatures
	4.5.3 Air Temperatures in the Temperature Control Unit
	4.5.4 Temperatures in the Asphalt Concrete Layers
	4.5.5 Permanent Surface Deformation (Rutting)
	4.5.6 Visual Inspection

	4.6 Section 623HA:  Cecabase
	4.6.1 Test Summary
	4.6.2 Outside Air Temperatures
	4.6.3 Air Temperatures in the Temperature Control Unit
	4.6.4 Temperatures in the Asphalt Concrete Layers
	4.6.5 Permanent Surface Deformation (Rutting)
	4.6.6 Visual Inspection

	4.7 Test Summary

	5. FORENSIC INVESTIGATION
	5.1 Introduction
	5.2 Forensic Investigation Procedure
	5.3 Test Pit Excavation
	5.4 Base-Course Density and Moisture Content
	5.5 Subgrade Moisture Content
	5.6 Dynamic Cone Penetrometer
	5.7 Test Pit Profiles and Observations
	5.7.1 Section 620HA:  Control
	5.7.2 Section 621HA:  Gencor
	5.7.3 Section 622HA:  Evotherm
	5.7.4 Section 623HA:  Cecabase

	5.8 Forensic Investigation Summary

	6. PHASE 3a LABORATORY TEST DATA SUMMARY
	6.1 Experiment Design
	6.1.1 Shear Testing for Rutting Performance
	Test Method
	Number of Tests

	6.1.2 Flexural Beam Testing for Fatigue Performance
	Test Method
	Number of Tests

	6.1.3 Moisture Sensitivity Testing
	Test Methods
	Number of Tests


	6.2 Test Results
	6.2.1 Rutting Performance Tests
	Air-Void Content
	Resilient Shear Modulus (G*)
	Cycles to Five Percent Permanent Shear Strain
	Permanent Shear Strain at 5,000 Cycles

	6.2.2 Beam Fatigue Tests
	Air-Void Content
	Initial Stiffness
	Initial Phase Angle
	Fatigue Life at 50 Percent Stiffness Reduction
	Flexural Frequency Sweep

	6.2.3 Moisture Sensitivity:  Hamburg Wheel-Track Test
	Air-Void Content
	Testing

	6.2.4 Moisture Sensitivity:  Tensile Strength Retained (TSR) Test
	Air-Void Content
	Testing


	6.3 Summary of Laboratory Testing Results

	7. CONCLUSIONS AND PRELIMINARY RECOMMENDATIONS
	7.1 Conclusions
	7.1.1 Comparative Energy Usage
	7.1.2 Achieving Compaction Density at Lower Temperatures
	7.1.3 Optimal Temperature Ranges for Warm-Mixes
	7.1.4 Cost Implications
	7.1.5 Rutting Performance
	7.1.6 Moisture Sensitivity
	7.1.7 Fatigue Performance
	7.1.8 Other Effects

	7.2 Preliminary Recommendations

	8. REFERENCES
	APPENDIX A: MIX DESIGN
	APPENDIX B: TEST PIT PROFILES
	APPENDIX C: BEAM FATIGUE SOAKING PROCEDURE
	APPENDIX D: LABORATORY TEST RESULTS
	TECHNICAL REPORT DOCUMENTATION PAGE_May15.pdf
	ca.gov
	TECHNICAL REPORT DOCUMENTATION PAGE





